DOI QR코드

DOI QR Code

Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack

리튬 이온 전지 팩의 열적 거동 모델링

  • Yi, Jae-Shin (Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University)
  • 이재신 (아주대학교 에너지 시스템 학부)
  • Received : 2010.12.10
  • Accepted : 2011.02.14
  • Published : 2011.03.31

Abstract

The performance and life-cycle costs of electric vehicle(EV) and hybrid electric vehicle(HEV) depend inherently on battery packs. Temperature uniformity in a pack is an important factor for obtaining optimum performance for an EV or HEV battery pack, because uneven temperature distribution in a pack leads to electrically unbalanced battery cells and reduced pack performance. In this work, a three-dimensional modeling was carried out to investigate the effects of operating conditions on the thermal behavior of a lithium-ion battery pack for an EV or HEV application. Thermal conductivities of various compartments of the battery were estimated based on the equivalent network of parallel/series thermal resistances of battery components. Heat generation rate in a cell was calculated using the modeling results of the potential and current density distributions of a battery cell.

전기자동차(Electric Vehicle, EV)와 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV)의 성능과 수명주기 비용은 배터리 팩에 좌우된다. 팩 내부의 비정상적인 온도분포는 전지간의 전기적인 불균형을 가져오고 팩의 성능을 떨어뜨리기 때문에 팩 내부의 온도 균일성은 EV와 HEV용 전지 팩의 최적 성능을 위한 중요한 요소이다. 본 연구에서는 EV와 HEV용 리튬이온전지 팩의 열적 거동을 예측하기 위해 삼차원 전산 모사를 하였다. 전지 팩의 열전도도는 각종 구성요소의 열전도 저항이 직렬과 병렬로 연결되어 있는 것으로 간주하였다. 셀에서의 열 발생량은 전지내부의 전기화학적 반응에 의한 반응열과 전류의 흐름과 내부저항에 의한 열을 고려하여 계산 하였다.

Keywords

References

  1. Armand, M. 외: "Building better batteries", Nature, Vol. 451, 652-657, (2008). https://doi.org/10.1038/451652a
  2. Balakrishnan, P.G. 외: "Safety mechanisms in lithiumion batteries", Journal of Power Sources, Vol. 155, 401-414, (2006). https://doi.org/10.1016/j.jpowsour.2005.12.002
  3. Stewart, S. G. 외: "Modeling the Performance of Lithium-Ion Batteries and Capacitors during Hybrid-Electric-Vehicle Operation", Journal of The Electrochemical society, Vol. 155(9), A664-A671, (2008). https://doi.org/10.1149/1.2953524
  4. Spotnitz, R. 외: "Abuse behavior of high-power, lithiumion cells", Journal of Power Sources, Vol. 113, 81-100, (2003). https://doi.org/10.1016/S0378-7753(02)00488-3
  5. Maleki, H., 외:"Thermal analysis and modeling of a notebook computer battery", Journal of Power Sources, Vol. 115, 131-136, (2003). https://doi.org/10.1016/S0378-7753(02)00722-X
  6. Kizilel, R. 외: "An alternative cooling system to enhance the safety of Li-ion battery packs", Journal of Power Sources, Vol. 194, 1105-1112, (2003).
  7. Bennett, C. O. and Myers, J.E.: "Momentum, Heat, and Mass Transfer", 3rd ed., McGraw-Hill, New York, NY, (1982).
  8. Bird, R. B., Stewart, W. E. and Lightfoot, E. N.: "Transport Phenomena". John Wiley & Sons, Inc., NY, (1960).
  9. Kwon, K. H. 외: "A two-dimensional modeling of a lithium-polymer battery", Journal of Power Sources, Vol. 163, 151-157, (2006). https://doi.org/10.1016/j.jpowsour.2006.03.012
  10. Kim U. S. 외: "Effect of electrode configuration on the thermal behavior of a lithium-polymer battery", Journal of Power Sources, Vol. 182(2), 630-638, (2008). https://doi.org/10.1016/j.jpowsour.2008.03.082
  11. Fluent V 6.3 User's Guide, Fluent Inc., (2006).