• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.031 seconds

A study on influence of cutting angle on the thermal characteristics in the linear heat cutting of EPS foam in case of generally sloped cutting (EPS foam 의 선형 열선절단시 일반 절단경사각의 제품 정밀도에 미치는 영향에 관한 연구)

  • 안동규;이상호;김효찬;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.176-180
    • /
    • 2002
  • All types of VLM-s process include the linear heat cutting of EPS foam to generate a layer with 3D shape. The dimensional accuracy and part quality of the cut part are dependent on the thermal characteristics in the EPS foam. The thermal characteristics are determined by operating parameters such as an effective heat input and cutting angle. The objective of this study is to investigate into the influence of cutting angle on the kerfwidth and the melted length of the cut part using the numerical analysis and the experiments in generally sloped cutting with two cutting angles. In order to estimate an accurate temperature field, the transient thermal analysis using moving coordinate system, the fully conformed mesh and the heat flux model with two cutting angles is carried out. From the results of the analysis and the experiments, it has been found that the influence of the rotational angle about x-axis in which the rotational axis is normal with hotwire cutting direction is appreciably negligible in comparison with that of the rotational angle about y-axis.

  • PDF

Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC (모터분리형 초고속 머시닝센터 주축계의 열특성 해석)

  • 김석일;권태균;나상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

A Study on Thermal Characteristics of Air Bearing System for High-Speed Spindle (고속 스핀들용 공기 베어링의 열 특성에 관한 연구)

  • 이득우;이종렬;김보언;안지훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1021-1026
    • /
    • 2000
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite element method analysis obtain temperature rise and temperature distribution of housing. For the analysis three-dimensional model is built and temperature rise and distribution in thermal steady state are computed for each rotational frequency. Generally. It is said that the heat generation of air bearing is negligible. But it is certain that the heat generation of air bearing can not be negligible especially in high-speed conditions Frequency response test for air spindle system is executed. In case that the heat generation of air spindle system is high, natural frequency of the system becomes lower when it reaches thermal steady-state and it means that the stiffness of air hearing becomes smaller due to the change of bearing clearance. It is shown that the temperature rise of all spindle system causes thermal expansion md induces the variation of hearing clearance. In consequence the st illness of air bearing becomes smaller.

  • PDF

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

Development of Thermal Precursor DB for Partial Disconnection and Poor Contact on Electrical Wire (배선에서의 반단선 및 접촉불량에 대한 열적 전조 DB구축)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Lee, Jong-Ho;Kang, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.30-36
    • /
    • 2009
  • This paper aims at the precursor analysis and DB development of electrical fires based on thermal and current signals for partial disconnection and poor contact on electric wires through experiments and simulations. Also, DB system required for developing the precursor DB with these data was studied and designed. Firstly, in case of partial disconnection, characteristics were derived and analyzed by experiment and electrical-thermal finite element method(Flux 3D) on the model wires which consist of VCTF and IV electric wires. Based on the characteristics, About 351 partial disconnection precursor patterns were generated by the thermal analysis for electric wire according to deterioration time under normal state and 200% overload state of rated current. Secondly, in order to develop poor contact precursor patterns, temperature value and the current signal were considered. In simulating the poor contact situation on connector area of MCCB, connection torque was changed. Through the experimental analysis, about 251 poor contact precursor patterns were generated. Finally, Using thermal precursor patterns obtained by partial disconnection and poor contact, electrical fire thermal precursor DB was developed.

A Study on the Thermal Characteristics of the High Speed Spindle considering Heat Transfer (열전달을 고려한 고속 주축계의 열특성 해석에 관한 연구)

  • 백경근;김수태;최대봉;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.285-290
    • /
    • 2000
  • Unsteady-state temperature distributions and thermal deformations in high speed spindle are studied. For the analysis, three dimensional model is built considering heat transfer characteristics such as natural and forced convection coefficients Temperature distributions and thermal deformations are analyzed by using the finite element method. Results of analysis are compared with the measured data.

  • PDF

Study on Thermal Analysis for Optimization LED Driver ICs

  • Chung, Hun-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.59-61
    • /
    • 2017
  • This research was analyzed thermal characteristics that was appointed disadvantage when smart LED driver ICs was packaged and we applied extracted thermal characteristics for optimal layout design. We confirmed reliability of smart LED driver ICs package without additional heat sink. If the package is not heat sink, we are possible to minimize package. For extracting thermal loss due to overshoot current, we increased driver current by two and three times. As a result of experiment, we obtained 22 mW and 49.5 mW thermal loss. And we obtained optimal data of 350 mA driver current. It is important to distance between power MOSFET and driver ICs. If the distance was increased, the temperature of package was decreased. And so we obtained optimal data of 3.7 mm distance between power MOSFET and driver ICs. Finally, we fabricated real package and we analyzed the electrical characteristics. We obtained constant 35 V output voltage and 80% efficiency.

Thermal Stress Analysis for the Printed Circuit Board of Electronic Packages (전자장비 회로기판의 열응력해석)

  • Kwon Y. J.;Kim J. A.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.416-424
    • /
    • 2004
  • In this paper, the heat transfer analysis and thermal stress analysis of the PCB(Printed Circuit Board) equipped in electronic Packages are carried out for various may types of chips on the PCB. And two structural PCB models are used in the analyses. The electronic chips on the PCB usually emit heat and this heat generates the thermal stress around the chip. The thermal load due to the heat generation of chips on the PCB may cause the malfunction of the electronic packages such as a monitor. a computer etc. Hence, the PCB should be designed to withstand these thermal loads. In this paper, the heat transfer analysis and thermal stress analysis are executed for the PCB model with pins and the analysis results are compared with the results for the PCB model without pins. The analysis results show that the PCB model without pins is not good for the thermal stress analysis of PCB, even though these two models have similar heat transfer characteristics. The analysis results also show that the highest thermal stress occurs in the pin especially attached to the highest temperature chip, and the PCB constrained to the electronic package on the long side is structurally more stable than other cases. The analyses of the PCB are executed using the finite element analysis code, NISA.

Analysis of Thermal Deformation of Co-bonded Dissimilar Composite considering Non-linear Thermal Expansion Characteristics of Composite Materials (비선형 열팽창 특성을 고려한 이종 접합 복합재의 열변형 해석)

  • Kim, Jeong-Beom;Kim, Hong-Il;Jeon, Ho-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.809-815
    • /
    • 2014
  • The co-bonded dissimilar composite under a wide range of temperature change shows thermal distortion due to the differences in thermal expansion characteristics of the composite materials. Analysis of the thermal expansion characteristics of each composite is required for the design of co-bonded dissimilar composite structure with considering the shape distortion during the manufacturing process. In this work, digital image correlation (DIC) technique is introduced for measuring the thermal distortion characteristics of co-bonded dissimilar composite specimen, carbon/epoxy and silica/phenolic. The thermal distortion of co-bonded dissimilar composite specimen is numerically estimated and compared with the experiments. The estimated results is successfully validated using the measured results.

Study on the Thermal Dissipation Characteristics of 16-chip LED Package with Chip Size (16칩 LED 패키지에서 칩 크기에 따른 방열특성 연구)

  • Lee, Min-San;Moon, Cheol-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2012
  • p-n junction temperature and thermal resistance of Light Emitting Diode (LED) package are affected by the chip size due to the change of the thermal density and the external quantum efficiency considering the heat dissipation through conduction. In this study, forward voltage was measured for two different size LED chips, 24 mil and 40 mil, which consist constitute 16-chip package. p-n junction temperature and thermal resistance were determined by thermal transient analysis, which were discussed in connection with the electrical characteristics of the LED chip and the structure of the LED package.