• Title/Summary/Keyword: Thermal aggregation

Search Result 87, Processing Time 0.028 seconds

Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2 (Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과)

  • SOOSUN LEE;SONG SEOK;TAE-WHAN HONG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.631-640
    • /
    • 2023
  • This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

Preparation of Submicron Nickel Powders with Non-aqueous Solvent In Microwave-Assisted Reduction Method (비수계 용매를 사용하는 마이크로파 환원법에 의한 서브마이크론 니켈 분말의 합성)

  • Jeon, Seung Yup;Kim, Jae-Hwan;Park, Na Yi;Park, Hoy Yul;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-325
    • /
    • 2007
  • Nickel powders were prepared from an aqueous nickel acetate solution and hydrazine hydrate using diethanolamine as the nonaqueous organic solvent in the conventional and microwave synthetic method. It was investigated that microwave non-thermal effect and synthetic condition affect the preparation of nickel powders by means of X-ray diffractometry, scanning electron microscopy, thermal gravymetry analysis, and X-ray photoelectron spectroscopy analysis. Compared with the conventional synthetic method, less of aggregation, smaller particle size, and more uniform distribution of particle size were obtained in the microwave synthetic method due to the non-thermal effect of microwaves.

Study on Thermal Properties of CdS - Embedded Poly(2-Acetamidoacrylic acid) Hydrogel Composite (CdS 나노입자틀 삽입한 Poly(2-Acetamidoacrylic acid) 수화젤 복합체의 열적 특성에 관한 연구)

  • Park, Chun-Ho;Ha, Eun-Ju;Jung, Jong-Mo;Lee, Jang-Oo;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • We report the template-based synthesis of well-dispersed CdS nanoparticles (NPs) in the interior of poly (2-acetamidoacrylic acid) (PAAA) hydrogel as a novel type of nanocomposite without particle aggregation via ion exchange in a aqueous system. As revealed by the TEM image analysis, the mean crystallite diameter of CdS NPs embedded in hydrogel composite was 4.5 nm, and the composite did not suffer any observable change after 6 months. Desorption/decomposition of CdS/PAAA hydrogel composite was studied by evolved gas analysis-gas chromatography-mass spectrometry (EGA-GC-MS), and thermogravimetric analysis (TGA) methods. From the TGA data, the thermal stability of the composite system increased by ca. 100 $^\circ$C and the content of CdS NPs in a dry composite gel was over 70 wt%. In addition, the chemical pathway was proposed for the entire decomposition process.

Preparation and Properties of PAA/PHA/Organoclay Nanocomposite (PAA/PHA/Organoclay 나노복합재료의 제조 및 특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.326-332
    • /
    • 2010
  • Nanocomposite films were prepared by blending poly(amic acid)(PAA), poly(o-hydroxyamide)( PHA) and organically modified montmorillonite (OMMT) that has a layered structure. XRD, SEM and TEM were used to study the morphology of PAA/PHA nanocomposites, and DMA, TGA, UTM, LOI and PCFC techniques were used to characterize the mechanical and thermal properties, and flame retardancy of the nanocomposites. TEM images revealed that OMMT layers were well dispersed in the PAA/PHA matrix and showed exfoliation and intercalation behavior. The addition of 3 wt% OMMT to the PAA/PHA blend increased the initial modulus of PAA/ PHA blend to 3.68 GPa that was ca. 48% higher than that of the control PAA/PHA blend. Above 4 wt%, however, both the initial modulus and the tensile strength were found to decrease, which might be due to the aggregation of OMMT in PAA/PHA matrix. When the OMMT content was below 3 wt%, the thermal stability and flame retardancy of the PAA/PHA nanocomposites increased with increasing OMMT content.

Accelerated Thermal Aging Test for Predicting Lifespan of Urethane-Based Elastomer Potting Compound

  • Min-Jun Gim;Jae-Hyeon Lee;Seok-Hu Bae;Jung-Hwan Yoon;Ju-Ho Yun
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • In the field of electronic components, the potting material, which is a part of the electronic circuit package, plays a significant role in protecting circuits from the external environment and reducing signal interference among electronic devices during operation. This significantly affects the reliability of the components. Therefore, the accurate prediction and assessment of the lifespan of a material are of paramount importance in the electronics industry. We conducted an accelerated thermal aging evaluation using the Arrhenius technique on elastic potting material developed in-house, focusing on its insulation, waterproofing, and contraction properties. Through a comprehensive analysis of these properties and their interrelations, we confirmed the primary factors influencing molding material failure, as increased hardness is related to aggregation, adhesion, and post-hardening or thermal-aging-induced contraction. Furthermore, when plotting failure times against temperature, we observed that the hardness, adhesive strength, and water absorption rate were the predominant factors up to 120 ℃. Beyond this temperature, the tensile properties were the primary contributing factors. In contrast, the dielectric constant and loss tangent, which are vital for reducing signal interference in electric devices, exhibited positive changes(decreases) with aging and could be excluded as failure factors. Our findings establish valuable correlations between physical properties and techniques for the accurate prediction of failure time, with broad implications for future product lifespans. This study is particularly advantageous for advancing elastic potting materials to satisfy the stringent requirements of reliable environments.

Dispersity of Silver Particles in Polyurethane Matrix: Effect of Polyurethane Chemical Structure (폴리우레탄 구조 변화에 따른 은 입자의 분산 특성)

  • Im, Hyun-Gu;Lee, Hyuk-Soo;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.543-549
    • /
    • 2007
  • We synthesized various polyurethanes(PU) haying different hard segments with different molecular weights of the soft segment to explore the effect of structure on the dispersion of silver particle in the phase of synthesized polyurethanes matrix. The thermal stability was increased by increasing the number of aromatic compound, while the degree of dispersion for silver particle was decreased. Silver particles showed better dispersion in the PU matrix having aromatic compounds when the soft segments were held constant. On the contrary, when the hard segment was held constant, silver particles on the PU matrix haying low $M_w$ of soft segment showed better dispersion than high $M_w$ of soft segment because poor chain mobility of low $M_w$ of soft segment restricted re-aggregation of silver particle. A sheet resistance of composite materials showed different aspects. In this case, the inter connection between silver particles was more important than its dispersion. In this study, the NDI-PEG 900/silver particle composite film showed the best thermal stability and electro conductivity.

Hydrogen storage of multiwall carbon nanotube decorated with bimetallic Pt-Pd nano catalysts using thermal vapor deposition (Pt 및 Pd 2금속 나노촉매를 증착한 탄소나노튜브의 수소저장특성 연구)

  • Hwang, Sang-Woon;So, Chang-Su;Naik, Mehraj-Ud-Din;Nahm, Kee-Suk
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In present work, we study the hydrogen storage of MWNT decorated with bimetallic Pt and Pd nanosize catalysts by Thermal Vapor Deposition [TVD]. The size of Pt and Pd particles is controlled as 5nm, 3nm, respectively by TVD. Before hydrogen storage measurement, the sample was heated for 1hr at $200^{\circ}C$ in H2 atmosphere. The Hydrogen sto rage of the sample was performed at room temperature and 33~34atm. The hydrogen storage of this composite showed 3.2wt% at 298K and 34atm, for three times. At 4th cycle, hydrogen storage is decreased to 1.5wt%, owing to the aggregation of bimetallic Pt and Pd nano particles.

Improving the Productivity of Recombinant Protein in Escherichia coli Under Thermal Stress by Coexpressing GroELS Chaperone System

  • Kim, So-Yeon;Ayyadurai, Niraikulam;Heo, Mi-Ae;Park, Sung-Hoon;Jeong, Yong-Joo;Lee, Sun-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.72-77
    • /
    • 2009
  • Here, we demonstrate that the overexpression of the GroELS chaperone system, which assists the folding of intracellular proteins and prevents aggregation of its biological targets, can enhance the thermotolerance of Escherichia coli strains and facilitate the production of recombinant protein under thermal stress. The overexpression of GroELS led to an about 2-fold higher growth rate of E. coli XL-1 blue than control at $45^{\circ}C$ and induced the growth of the strain even at $50^{\circ}C$, although the growth was not sustained in the second-round culture. The effect of GroELS overexpression was also effective on other E. coli strains such as JM109, $DH5{\alpha}$, and BL21. Finally, we have shown that coexpression of GroELS allows us to produce recombinant protein even at $50^{\circ}C$, a temperature at which the protein production based on E. coli is not efficient. This study indicates that the employment of the GroELS overexpression system can expand the range of environmental conditions for E. coli.

EVA/Clay Nanocomposite by Solution Blending: Effect of Aluminosilicate Layers on Mechanical and Thermal Properties

  • Pramanik, M.;Srivastava, S.K.;Samantaray, B.K.;Bhowmick, A.K.
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.260-266
    • /
    • 2003
  • Ethylene vinyl acetate (EVA)/clay nanocomposites were synthesized by blending a solution of ethylene vinyl acetate copolymer containing 12% vinyl acetate abbreviated as EVA-12 in toluene and dispersion of dodecyl ammonium ion intercalated montmorillonite (l2Me-MMT) in N,N-dimethyl acetamide (DMAc). X-ray patterns of sodium montmorillonite ($Na^+$-MMT) and 12Me-MMT exhibited $d_{001}$ peak at $2{\theta}=7.4^{\circ}$ and $2{\theta}=5.6^{\circ}$ respectively; that is, the interlayer spacing of MMT increased by about 0.39 nm due to intercalation of dodecyl ammonium ions. The XRD trace of EVA showed no peak in the angular range of $3-10^{\circ}(2{\theta})$. In the XRD patterns of EVA/clay hybrids with clay content up to 6 wt% the basal reflection peak of 12Me-MMT was absent. leading to the formation of delaminated configuration of the composites. When the 12Me-MMT content was 8 wt% in the EVA-12 matrix, the hybrid revealed a peak at about $2{\theta}=5.6^{\circ}$, owing to the aggregation of aluminosilicate layers. Transmission electron microscopic photograph exhibited that an average size of 12-15 nm clay layers were randomly and homogeneously dispersed in the polymer matrix, which led to the formation of nanocomposite with delaminated configuration. The formation of delaminated nanocomposites was manifested through the enhancement of mechanical properties and thermal stability, e.g. tensile strength of an hybrid containing only 2 wt% 12Me-MMT was enhanced by about 36% as compared with neat EVA-12.

Effect of a Pigment Addition on Mechanical Properties of Epoxy Resin (안료 첨가에 따른 에폭시 수지의 기계적 물성 변화 연구)

  • Kwon, Woong;Han, Minwoo;Kim, Changkyu;Park, Sungmin;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.79-86
    • /
    • 2021
  • This study investigated the effect of a pigment (C. I. Pigment Red 122) addition on mechanical properties of the epoxy resin, diglycidyl ether of bisphenol F (DGEBF) and G640 curing agent. The K/S value, thermal properties, tensile properties, and fracture toughness of the prepared epoxy samples were evaluated. When the pigment was added to the DGEBF/G640 epoxy system, the color of the epoxy resin changed to red from transparent and yellowish color, and the K/S value in the red region increased as the pigment content increased. When the pigment content was increased up to 0.1 phr, the tensile strength was improved up to 21.8 %, whereas the pigment content was over 0.1 phr, the tensile strength decreased. The fracture toughness was improves up to 23.1 % until the amount of pigment added was up to 0.2 phr, and then decreased when the amount of the pigment added was more than 0.2 phr. This attributed to the aggregation of the pigments in the epoxy resin when the amount of the pigment added was more than 0.2 phr. Therefore, the coloration of the epoxy resin with an organic pigment must be carried out very carefully because the coloration of epoxy resin affects its mechanical properties.