Hydrogen storage of multiwall carbon nanotube decorated with bimetallic Pt-Pd nano catalysts using thermal vapor deposition

Pt 및 Pd 2금속 나노촉매를 증착한 탄소나노튜브의 수소저장특성 연구

  • Hwang, Sang-Woon (School of Chemical Engineering, Chonbuk National University) ;
  • So, Chang-Su (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Naik, Mehraj-Ud-Din (School of Chemical Engineering, Chonbuk National University) ;
  • Nahm, Kee-Suk (School of Chemical Engineering, Chonbuk National University)
  • 황상운 (전북대학교 반도체 화학공학) ;
  • 소창수 (전북대학교 수소연료전지 특성화대학원) ;
  • ;
  • 남기석 (전북대학교 반도체 화학공학)
  • Published : 2009.06.30

Abstract

In present work, we study the hydrogen storage of MWNT decorated with bimetallic Pt and Pd nanosize catalysts by Thermal Vapor Deposition [TVD]. The size of Pt and Pd particles is controlled as 5nm, 3nm, respectively by TVD. Before hydrogen storage measurement, the sample was heated for 1hr at $200^{\circ}C$ in H2 atmosphere. The Hydrogen sto rage of the sample was performed at room temperature and 33~34atm. The hydrogen storage of this composite showed 3.2wt% at 298K and 34atm, for three times. At 4th cycle, hydrogen storage is decreased to 1.5wt%, owing to the aggregation of bimetallic Pt and Pd nano particles.

본 연구에서는 열화학증착법을 이용하여Pt 및 Pd 전이금속 촉매를 각각 5nm, 3nm로 탄소나노튜브에 증착하여 수소저장특성을 연구하였다. 제작한 시료를 수소분위기에서 $200^{\circ}C$의 조건에서 1시간동안 열처리한 후 $25^{\circ}C$, 33~34atm의 조건에서 수소저장량을 측정하였다. 이 조건에서 수소저장량은 3.2wt%로 나타났고 동일 조건에서 반복 수행결과 수소저장과 탈착을 반복하여도 3.1wt%의 저장량을 보여 수소저장량의 변화가 거의 없음을 관찰하였다. 그러나 4번째 저장cycle이후에는 수소저장량이 1.5wt%로 급격히 감소하였다. 이는 증착된 전이금속촉매의 조대화로 인해 저장량이 감소함을 확인하였다. 실험결과를 근거로 Pt 및 Pd 2금속을 증착한 탄소나노튜브의 수소저장메커니즘을 제시하였다.

Keywords

References

  1. W. Qikun, Z. Changchun, L. Weihua, W. Ting, "Hydrogen storage by carbon nanotube and their films under ambient pressure" Inter. J. Hydrogen Energy. 27 (2002) 497 https://doi.org/10.1016/S0360-3199(01)00162-8
  2. Y. J. Choi, J. Lu, H. Y. Sohn, Z. Z. Fang, "Hydrogen storage properties of the Mg–Ti–H system prepared by high-energy–high-pressure reactive milling"J. Power Sources. 180 (2008) 491 https://doi.org/10.1016/j.jpowsour.2008.02.038
  3. C. H. Chen, C. C. Huang, "Hydrogen adsorption in defective carbon nanotubes" Micro. Meso. Mater. 109 (2008) 549 https://doi.org/10.1016/j.micromeso.2007.06.003
  4. A. L. M. Reddy, S. Ramaprabhu, "Hydrogen adsorption properties of single-walled carbon nanotube—Nanocrystalline platinum composites", Inter. J. Hydrogen Energy. 33 (2008) 1028 https://doi.org/10.1016/j.ijhydene.2007.11.005
  5. M. Sankarana, B. Viswanathan, S. S. Murthy, "Boron substituted carbon nanotubes—How appropriate are they for hydrogen storage?", Inter. J. Hydrogen Energy 33 (2008) 393 https://doi.org/10.1016/j.ijhydene.2007.07.042
  6. P. Benard, R. Chahine, P.A. Chandonia, D. Cossement, G. D. Douville, L. Lafi, P. Lachance, R. Paggiaro, E. Poirier, "Comparison of hydrogen adsorption on nanoporous materials", J. Alloy. Comp. 446 (2007) 380 https://doi.org/10.1016/j.jallcom.2006.11.192
  7. W.C. Xu, K. Takahashi, Y. Matsuo, Y. Hattori, M. Kumagai, S. Ishiyama, K. Kaneko, S. Iijima, "Investigation of hydrogen storage capacity of various carbon materials", Inter. J. Hydrogen Energy. 32 (2007) 2504 https://doi.org/10.1016/j.ijhydene.2006.11.012
  8. C. Weng, S. P. Ju, K. C. Fang, F. P. Chang, "Atomistic study of the influences of size, VDW distance and arrangement of carbon nanotubes on hydrogen storage", Comput. Mater. Sci. 40 (2007) 300 https://doi.org/10.1016/j.commatsci.2007.01.005
  9. P. Benard, R. Chahine, "Storage of hydrogen by physisorption on carbon and nanostructured materials", Scripta Materialia. 56 (2007) 803 https://doi.org/10.1016/j.scriptamat.2007.01.008
  10. A. Paolone, O. Palumbo, R. Cantelli, S. Roth, U. Dettlaff, "An anelastic spectroscopy investigation of carbon nanotubes produced by the high-pressure CO method", Mater. Science and Eng. A 442 (2006) 314 https://doi.org/10.1016/j.msea.2006.01.155
  11. John J. Vajo, Gregory L. Olson, "Hydrogen storage in destabilized chemical systems", Scripta Mater. 56 (2007) 829 https://doi.org/10.1016/j.scriptamat.2007.01.002
  12. Chien-Hung Chen, Chen-Chia Huang, "Hydrogen storage by KOH-modified multi-walled carbon nanotubes", Inter. J. Hydrogen Energy. 32 (2007) 237 https://doi.org/10.1016/j.ijhydene.2006.03.010
  13. Shi-chun Mu, Hao-lin Tang, Sheng-hao Qian, Mu Pan, Run-zhang Yuan. "Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration", Carbon. 44 (2006) 762 https://doi.org/10.1016/j.carbon.2005.09.010
  14. Sang-Woon Hwang, Sami-ullah Rather, Mehraj-ud-din Naik, Chang Su Soo, Kee-Suk Nahm. "Hydrogen uptake of multiwalled carbon nanotubes decorated with Pt –Pd alloy using thermal vapour deposition method", J. Alloy. Comp. 480 (2009) L20 https://doi.org/10.1016/j.jallcom.2009.01.136