• 제목/요약/키워드: Thermal Stress intensity Factor

검색결과 92건 처리시간 0.027초

일반 형상의 커프스형 강체균열에 대한 열응력세기계수 결정 (Determination of thermal Stress Intensity Factors for General Cusp-Crack Shaped Rigid Inclusion)

  • 이강용;장용훈
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1216-1220
    • /
    • 1992
  • 본 연구에서는 Lee등의 연구를 일반화하기 위하여 급수 형태의 등각사상함수 로 표현되는 일반형태의 커스프형 강체함유물이 존재하는 경우에 대하여 복소 포텐셜 함수와 TSIF에 대한 일반해를 구하기로 한다.

커스프형 강체함유물 상의 접합경계면 균열에 대한 열응력세기계수 (Thermal stress Intensity Factors for the Interfacial Crack on a Cusp-Type Inclusion)

  • 이강용;장용훈
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1255-1265
    • /
    • 1992
  • 본 연구에서는 단열 및 온도가 영으로 고정된 경계조건을 갖는 대칭 입술형과 대칭 익형 강체함유 물상의 접합경계면 균열에 대한 Hilbert 문제로부터 복소 포텐셜 함수와 커스프 균열선단 그리고 접합경계면 균열선단에서 TSIF를 구하고자 한다.

터빈축차내에 내재된 타원균열의 응력세기계수 결정 (Determination of Stress Intensity Factors for Embedded Elliptical Crack in Turbine Rotor)

  • 이강용;김종성;하정수
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1229-1242
    • /
    • 1995
  • The thermal shock stress intensity factors of semi-elliptical surface crack in finite plate and the stress intensity fractors of embedded elliptical crack in turbine rotor is determined by means of Vainshtok weight function method. In case of semi-elliptical surface crack, the solution is compared with previous solution. The stress intensity factor for embedded elliptical crack in turbine rotor loaded by centrifugal and thermal loading is also determined. In this case, the value of stress intensity factor is larger at crack contour near internal radius surface and is almost constant at the crack contour farther from internal radius surface.

영향계수를 이용한 원통용기 축방향 표면결함의 응력확대계수의 계산 (Stress Intensity factor Calculation for the Axial Semi-Elliptical Surface Flaws on the Thin-Wall Cylinder Using Influence Coefficients)

  • 장창희;문호림;정일석;김태룡
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2390-2398
    • /
    • 2002
  • For integrity analysis of nuclear reactor pressure vessel, including the Pressurized thermal shock analysis, the fast and accurate calculation of the stress intensity factor at the crack tip is needed. For this, a simple approximation scheme is developed and the resulting stress intensity factors for axial semi-elliptical cracks in cylindrical vessel under various loading conditions are compared with those of the finite element method and other approximation methods, such as Raju-Newman's equation and ASME Sec. Xl approach. For these, three-dimensional finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite clement analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. The approximation solutions are within $\pm$2.5% of the those of FEA using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the VINTIN method provides sufficiently accurate stress intensity factor values for axial semi-elliptical flaws on the surface of the reactor pressure vessel.

커스프균열형 강체함유물의 열응력 세기계수에 관한 연구 (Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape)

  • 이강용;최흥섭
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.497-504
    • /
    • 1988
  • 본 연구에서는 트랙션이 없는 커스프 균열에 적용한 방법을 확장하여 무한대 에서 균일열유동을 받는 무한체내에 하이포사이클로이드형(hypocycloid type), 대칭이 기형(symmetric airfoil type), 대칭입술형(symmetric lip type) 강체 함유물이 존재 하고 그 표면은 단열되거나 상대온도가 영으로 주어지는 경우에 대해서 열응력세기계 수(thermal stress intensity factor이하에서 TSIF로 표기함)를 유도하고자 한다.

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.

자동차 브레이크 디스크의 열 균열 생성 (Thermal Crack Creation Process in an Automotive Brake Disk)

  • 안수익;이병하;조종두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.143-147
    • /
    • 2000
  • This describes thermal crack creation process in automotive disks. Thermal cracks have been serious defects which induced disastrous accidents during traveling. The thermal cracks must be regularly eye-inspected. The cracks have been experimentally analysed; but they were not reported by analytic means yet. This paper proposed thermal crack creation process by a computer simulation which enlightened how to investigate thermal crack by cheap means. We explained the disk thermal crack creation and calculated stress intensity factor of an assumed surface crack in an automotive disk.

  • PDF

수정 Vainshtok 가중함수법에 의한 타원균열의 열충격 응력세기계수의 결정 (Determination of Thermal Shock Stress Intensity Factor for Elliptical Crack by Modified Vainshtok Weight Function Method)

  • 이강용;김종성
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.463-474
    • /
    • 1995
  • Modified Vainshtok weight function method is developed. The thermal shock stress intensity factors for elliptical surface cracks existed in the thin and thick walled cylinders are determined. The present results are compared with previous solutions and shown to be good agreement with them.

SPATE에 의한 직교이방성체의 응력확대계수 측정 (Measurement of Stress Intensity Factor of Orthotropic Material Using SPATE)

  • 황재석;서재국;이효재;남정환
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3224-3233
    • /
    • 1996
  • SPATE(Stress Pattern Analysis by Thermal Emission) can be effectively used to analyze the stress distribution of the orthotropic structure under the repeated load by non-contact. In this research, the measuring conception and method of stress intensity factor of orthotropic material using SPATE are suggested. The relationships between the maximum values of SPATE signal and $1/\sqrt{X'}$ (or $1/\sqrt{y'}$) are theoretically established in the vicinity of crack tip of the orthotropic material. It is certified through SPATE experiment that their linear quality is very excellent.

가압열충격을 고려한 원자로 압력용기의 파괴역학적 해석 (Fracture Mechanics Analysis of a Reactor Pressure Vessel Considering Pressurized Thermal Shock)

  • 박재학;박상윤
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.29-38
    • /
    • 2001
  • The purpose of this paper is to evaluate the structural integrity of a reactor pressure vessel subjected to the pressurized thermal shock(PTS) during the transient events, such as main steam line break(MSLB) and small break loss of coolant accident(SBLOCA). For postulated surface or subsurface cracks, variation curves of stress intensity factor are obtained by using the three different methods, including ASME section XI code anlysis, the finite element alternating method and the finite element method. From the stress intensity factor curves, the maximum allowable nil-ductility transition temperatures(RT/NDT/) are determined by the tangent criterion and the maximum criterion for various crack configurations and two initial transient events. As a result of the analysis, it is noted that axial cracks have smaller maximum allowable RT$_{NDT}$ values than same-sized circumferential cracks for both the transient events in the case of the tangent criterion. Axial cracks have smaller RT$_{NDT}$ values than same-sized circumferential cracks for MSLB and circumferential cracks have smaller values than axial cracks for SBLOCA in the case of the maximum criterion.

  • PDF