• Title/Summary/Keyword: Thermal Diode

Search Result 327, Processing Time 0.031 seconds

Green Light-emitting diode using a germyl-substituted PPV derivative

  • Hwang, Do-Hoon;Lee, Jeong-Ik;Cho, Nam-Sung;Shim, Hong-Ku
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.582-584
    • /
    • 2004
  • The light-emitting properties of poly(2-triethylgermyl-1,4-phenylenevinylene) (TEG-PPV) are compared with those of the silyl-substituted PPV homologue, poly(2-trimethylsilyl-1,4phenylenevinylene) (TMS-PPV). The precursor polymer is solution-processable. After carrying out thermal elimination on the precursor polymer film, the resulting fully conjugated polymer film was found to exhibit high thermal stability in air, and absorption that is shifted to the longer wavelength region owing to the extension of the n-conjugated system. TEG-PPV exhibits efficient green light emission; the maximum PL emission of a TEG-PPV thin film was found to be at 515 nm. The HOMO and LUMO energy levels were also determined using photo-emission spectroscopy. The performance of the TEG-PPV EL device was found to be comparable to that of the TMS-PPV device.

  • PDF

Thermal treatment effect of $CaF_2$ films for TFT gate insulator applications

  • Kim, Do-Young;Park, Suk-Won;Junsin Yi
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.145-148
    • /
    • 1998
  • Fluoride({{{{ { CaF}_{2 } }}}}) films exhibited a cubic structure with similar lattice constant to that of Si and have sufficient breakdown electric field as gate dielectric material. Therefore, {{{{ { CaF}_{2 } }}}} are expected to replace conventional insulator such {{{{ { SiO}_{ 2},{Ta}_{2}{O}_{ 2} and{Al}_{2}{O}_{5}. However, {CaF}_{2}}}}} films showed hystereisis properties due to mobile charges in the film. To solve this problem we performed thermal treatment and achieves field. C-v results indicate a reduced hystereisis window of {{{{ }}}}ΔV =0.2v, LOW INTERFACE STATE {{{{{D}_{it}=2.0 TIMES {10}^{11}{cm}^{-1}{eV}^{-1}}}}} in midgap, and good WIS diode properties. We observed a preferential crystallization of(200) plane from XRD analysis. RTA treatment effects on various material properties of {{{{{CaF}_{2}}}}} are presented in this paper.

  • PDF

Thermal annealing for long-term stability of polymer light-emitting devices

  • Kim, Jin-Ook;Park, Jong-Hyn;Lee, Jae-Yoon;Lee, N.Y.;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.153-156
    • /
    • 2003
  • Thermal annealing of a polymer light-emitting diode (PLED) is shown to result in a remarkable improvement in the long-term stability of the device. The best half-life is obtained at an annealing temperature above the $T_g$ of emitting polymer. It is shown that the annealing of the emitting polymer layer results in a more than an order of magnitude increase in the half-life in spite of a decrease in the efficiency of the device as the annealing temperature increases.$^1$

  • PDF

Analysis of the spectral characteristics of white light-emitting diodes under various thermal environments

  • Jeong, Su-Seong;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • An empirical functional form was suggested for the analysis of the emission spectrum of high-power light-emitting diode (LED) consisting of a sharp blue peak from the LED chips and a broad yellow peak from the phosphor layer. The peak positions, half widths, shape parameters, and amplitudes of these two peaks were reliably obtained as a function of the temperature, and the results were discussed qualitatively in relation with the junction temperature. The adoption of an inert liquid was found to have significantly reduced the LED temperature and the color shift of the emitted light. The phenomenological approach used in this study may be helpful in the simulation of the LED spectrum under various thermal conditions, and may thus be helpful in the improvement of the device performance.

Design Optimization of an Extruded-type Cooling Structure for Reducing the Weight of LED Streetlights (LED 가로등용 압출형 방열 구조물 경량화를 위한 최적 설계)

  • Park, Seung-Jae;Lee, Tae-Hee;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.394-401
    • /
    • 2016
  • The configuration of an extruded-type cooling structure was optimized for the light-emitting diode (LED) streetlights that have recently replaced convectional metal halide streetlights for energy saving. Natural convection and radiative heat transfer over the cooling structure were simulated using a numerical model with experimental verification. An improved cooling structure type was suggested to overcome the previous performance degeneration, as confirmed by analyzing the thermal flow around the existing cooling structure. A parameter study of the cooling structure geometries was also conducted and, based on the numerical results, the configuration was optimized to reduce the weight of the cooling structure. Consequently, the mass of the cooling structure was reduced by 60%, while the thermal performance was improved by 10%.

LED Headlamp Thermal Characteristics by Looped Heat Pipe (루프형 히트파이프를 이용한 LED 헤드램프 열적 특성)

  • Noh H.C.;Park K.S.;Kang B.D.;Son S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.443-444
    • /
    • 2006
  • The influence of the heat sources on LED junction temperature are Engine room air, Back plate, Electric power device, and so on. LED lamp cooling system is considered to be an important subject fur high light efficiency. Because LED Chip will be problem When LED junction temperature be over $135^{\circ}C$, In this Study, The Looped Heat Pipe System is considered to prevent LED Chip fall. The LHPS is consist of evaporator part, condenser part, heat pipe part. The working fluid of LHPS is HCFC-123. In this study, to prevent LED Chipfall, we study thermal characteristics for Looped Heat Pipe System with LED lamp.

  • PDF

Diffusion Model of Aluminium for the Formation of a Deep Junction in Silicon (실리콘에서 깊은 접합의 형성을 위한 알루미늄의 확산 모델)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • In this study, the physical mechanism and diffusion effects in aluminium implanted silicon was investigated. For fabricating power semiconductor devices, an aluminum implantation can be used as an emitter and a long drift region in a power diode, transistor, and thyristor. Thermal treatment with O2 gas exhibited to a remarkably deeper profile than inert gas with N2 in the depth of junction structure. The redistribution of aluminum implanted through via thermal annealing exhibited oxidation-enhanced diffusion in comparison with inert gas atmosphere. To investigate doping distribution for implantation and diffusion experiments, spreading resistance and secondary ion mass spectrometer tools were used for the measurements. For the deep-junction structure of these experiments, aluminum implantation and diffusion exhibited a junction depth around 20 ㎛ for the fabrication of power silicon devices.

Synthesis of high purity carbon powders using inductively thermal plasma (유도 열플라즈마 공정을 이용한 고순도 카본분말 합성)

  • Kim, Kyung-In;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.309-313
    • /
    • 2013
  • Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. Especially, high purity SiC is applicable to the fields of power semiconductor and lighting emitting diode (LED). In this work, high purity carbon powders as raw material for high purity SiC were prepared by a RF induction thermal plasma. Dodecane ($C_{12}H_{26}$) as hydrocarbon liquid precursor has been utilized for synthesis of high purity carbon powders. It is found that the filtercollected carbon powders showed smaller particle size (10~20 nm) and low crystallinity compared to the reactor-collected carbon powders. The purities of reactor-collected and filter-collected carbon powders were 99.9997 % (5N7) and 99.9993 % (5N3), respectively. In addition, the impurities of carbon powders synthesized by RF induction thermal plasma were mainly originated from the surrounding environment.

Improved Thermal Resistance of an LED Package Interfaced with an Epoxy Composite of Diamond Powder Suspended in H2O2 (과산화수소 적용 TIM의 LED 패키지 열특성 개선효과)

  • Choi, Bong-Man;Hong, Seong-Hun;Jeong, Yong-Beom;Kim, Ki-Bo;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.221-224
    • /
    • 2014
  • We present a method for manufacturing a TIM used for packaging a high-power LED. In this method a mixture of diamond powder and hydrogen peroxide is used as a filler epoxy. The thermal resistance of the TIM with hydrogen peroxide was improved by about 30% over the thermal resistance of the TIM without hydrogen peroxide. We demonstrate that as a result the heat generated from the chip is easily dissipated through the TIM.

A discretization method of the three dimensional heat flow equation with excellent convergence characteristics (우수한 수렴특성을 갖는 3차원 열흐름 방정식의 이산화 방법)

  • Lee, Eun-Gu;Yun, Hyun-Min;Kim, Cheol-Seong
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.136-145
    • /
    • 2002
  • The simulator for the analysis of the lattice temperature under the steady-state condition is developed. The heat flow equation using the Slotboom variables is discretized and the integration method of the thermal conductivity without using the numerical analysis method is presented. The simulations are executed on the $N^+P$ junction diode and BJT to verify the proposed method. The average relative error of the lattice temperature of $N^+P$ diode compared with DAVINCI is 2% when 1.4[V] forward bias is applied and the average relative error of the lattice temperature of BJT compared with MEDICI is 3% when 5.0[V] is applied to the collector contact and 0.5[V] is applied to the base contact. BANDIS using the proposed method of integration of thermal conductivity needs 3.45 times of matrix solution to solve one bias step and DAVINCI needs 5.1 times of matrix solution MEDICI needs 4.3 times of matrix solution.

  • PDF