DOI QR코드

DOI QR Code

Diffusion Model of Aluminium for the Formation of a Deep Junction in Silicon

실리콘에서 깊은 접합의 형성을 위한 알루미늄의 확산 모델

  • Received : 2020.05.26
  • Accepted : 2020.05.28
  • Published : 2020.07.01

Abstract

In this study, the physical mechanism and diffusion effects in aluminium implanted silicon was investigated. For fabricating power semiconductor devices, an aluminum implantation can be used as an emitter and a long drift region in a power diode, transistor, and thyristor. Thermal treatment with O2 gas exhibited to a remarkably deeper profile than inert gas with N2 in the depth of junction structure. The redistribution of aluminum implanted through via thermal annealing exhibited oxidation-enhanced diffusion in comparison with inert gas atmosphere. To investigate doping distribution for implantation and diffusion experiments, spreading resistance and secondary ion mass spectrometer tools were used for the measurements. For the deep-junction structure of these experiments, aluminum implantation and diffusion exhibited a junction depth around 20 ㎛ for the fabrication of power silicon devices.

Keywords

References

  1. C. S. Fuller and J. A. Ditzenberger, J. Appl. Phys., 27, 544 (1956). [DOI: https://doi.org/10.1063/1.1722419]
  2. G. Galvagno, F. La Via, F. Priolo, and E. Rimini, Semicond. Sci. Technol., 8, 488 (1993). [DOI: https://doi.org/10.1088/0268-1242/8/4/002]
  3. Z. Yang, H. Du, and S. P. Withrow, Mater. Res. Soc. Symp. Proc., 354, 207 (1994). [DOI: https://doi.org/10.1557/PROC-354-207]
  4. E. Halder, P. Roggwiller, and J. Gobrecht, Phys. Scr., 39, 406 (1989). [DOI: https://doi.org/10.1088/0031-8949/39/3/030]
  5. Ch. Ortiz, D. Mathiot, Ch. Dubois, and R. Jerisian, J. Appl. Phys., 87, 2661 (2000). [DOI: https://doi.org/10.1063/1.372236]
  6. O. Krause, H. Ryssel, and P. Pichler, J. Appl. Phys., 91, 5645 (2002). [DOI: https://doi.org/10.1063/1.1465501]
  7. H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, and K. A. Richardson, J. Appl. Phys., 94, 7433 (2003). [DOI: https://doi.org/10.1063/1.1624487]
  8. A. G. Kesavev, V. V. Kondratyev, and I. L. Lomaev, Phys. Met. Metallogr., 119, 1101 (2018). [DOI: https://doi.org/10.1134/S0031918X18110078]
  9. Infineon Tec. AG., Power MOSFET, http://www.infineon.com (2012).
  10. B. J. Baliga, Power Semiconductor Devices (Tomson Information Publishing, Belmont, 1996) p. 375.
  11. J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, Semiconductor Power Devices, 2nd Edition (Springer International Publishing, New York, 2018) p. 257. [DOI: https://doi.org/10.1007/978-3-319-70917-8]
  12. B. J. Baliga, Fundamentals of Power Semiconductor Devices, 2nd Edition (Springer International Publishing, New York, 2018) p. 89. [DOI: https://doi.org/10.1007/978-3-319-93988-9_3]
  13. J. F. Ziegler and J. P. Biersack, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985) p. 93. [DOI: https://doi.org/10.1007/978-1-4615-8103-1_3]
  14. J. F. Ziegler, SRIM 2013 Manual, http://www.srim.org/ (2013).
  15. H. Ryssel, J. Lorenz, and W. Kruger, Nucl. Instrum. Methods Phys. Res., Sect. B, 19, 45 (1987). [DOI: https://doi.org/10.1016/S0168-583X(87)80012-5]
  16. Fraunhofer-Gesellschaft, User's Guide 4.2, ICECREM Manual (2000).
  17. W. Moller and W. Eckstein, Nucl. Instrum. Methods Phys. Res., Sect. B, 2, 814 (1984). [DOI: https://doi.org/10.1016/0168-583X(84)90321-5]
  18. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991) p. 169. [DOI: https://doi.org/10.1007/978-3-642-73513-4]