• 제목/요약/키워드: Thermal Desorption

검색결과 273건 처리시간 0.026초

Shallow Trench Isolation 공정에서 수분에 의한 nMOSFET의 Hump 특성 (Moisture Induced Hump Characteristics of Shallow Trench-Isolated nMOSFET)

  • 이영철
    • 한국정보통신학회논문지
    • /
    • 제10권12호
    • /
    • pp.2258-2263
    • /
    • 2006
  • 본 논문은 shallow trench isolation (STI) 공정에서 ILD (inter-layer dielectric) 막의 수분에 의해 야기되는 단 채널 (short-channel) nMOSFET의 hump 특성의 원인을 분석하고 억제 방법을 제안하였다. 다양한 게이트를 가지는 소자와 TDS-APIMS(Thermal Desorption System-Atmospheric Pressure Ionization Mass Spectrometry) 측정을 이용하여 hump 특성을 체계적으로 분석하였고, 분석을 바탕으로 단 채널 hump모델을 제안하였다. 제안된 모델에 의한 단 채널 nMOSFET의 hump 현상은 poly-Si 게이트 위의 ILD 막의 수분이 상부의 SiN 막에 의해 밖으로 확산되지 못하고 게이트와 STI의 경계면으로 확산하여 발생한 것이 며, 이를 개선하기 위해 상부의 SiN 막의 증착 전 열공정을 통해 ILD 막의 수분을 효과적으로 배출시킴으로써 hump 특성을 성공적으로 억제하였다.

대도시 교통밀집지역 도로변 대기 중 휘발성유기화합물의 농도분포 특성 (Characteristics of Atmospheric Concentrations of Volatile Organic Compounds at a Heavy-Traffic Site in a Large Urban Area)

  • 백성옥;김미현;박상곤
    • 한국대기환경학회지
    • /
    • 제18권2호
    • /
    • pp.113-126
    • /
    • 2002
  • This study was carried out to evaluate the temporal (daily, weekly, and seasonal) variations of volatile organic compounds (VOCs) concentrations at a road-side site in a heavy-traffic central area of Metropolitan Taegu. Ambient air sampling was undertaken continuously for 14 consecutive days in each of four seasons from the spring of 1999 to the winter of 2000. The VOC samples were collected using adsorbent tubes, and were determined by thermal desorption coupled with GC/MS analysis. A total of 10 aromatic VOCs of environmental concern were determined, including benzene, toluene, ethylbenzene, m+p-xylenes, styrene, o-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and naphthalene. Among 10 target VOCs, the most abundant compounds appeared to be toluene (1.5 ∼ 102 ppb) and xylenes (0.1 ∼ 114 ppb), while benzene levels were in the range of 0.3 ∼6 ppb. It was found that the general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours (AM 7∼9 and PM 7 ∼9). However, some VOCs such as toluene, xylenes, and ethylbenzene were likely to be affected by a number of unknown sources other than vehicle exhaust, being attributed to the use of paints, and/or the evaporation of solvents used nearby the sampling site. In some instances, extremely high concentrations were found for these compounds, which can not be explained solely by the impact of vehicle exhaust. The results of this study may be useful for estimating the relative importance of different emission sources in large urban areas. Finally, it was suggested that the median value might be more desirable than the arithmetic mean as a representative value for the VOC data group, since the cumulative probability distribution (n=658) does not follow the normal distribution pattern.

흡착튜브 - 열탈착 정량분석 기법에 기반한 과일시료로부터 자연적 휘발성유기화합물의 배출특성 연구 (Biogenic Volatile Organic Compounds (BVOC) Emissions from Fruit Samples Based on Sorbent Tube Sampling and Thermal Desorption (ST-TD) Analysis)

  • 안정현;김기현
    • 한국대기환경학회지
    • /
    • 제29권6호
    • /
    • pp.757-772
    • /
    • 2013
  • In this study, a combination of sorbent tube (ST)-thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) was used for quantitative analysis of liquid phase standards of 10 BVOC ((1) (+)-${\alpha}$-pinene, (2) (+)-${\beta}$-pinene, (3) ${\alpha}$-phellandrene, (4) (+)-3-carene, (5) ${\alpha}$-terpinene, (6) p-cymene, (7) (R)-(+)-limonene, (8) ${\gamma}$- terpinene, (9) myrcene, and (10) camphene). The results of BVOC calibration yielded comparatively stable pattern with response factor (RF) of 23,560~50,363 and coefficient of determination ($R^2$) of 0.9911~0.9973. The method detection limit (MDL) of BVOC was estimated at 0.03~0.06 ng with the reproducibility of 1.30~5.13% (in terms of relative standard error (RSE)). Emissions of BVOC were measured from four types of fruit samples ((1) tangerine (TO), (2) tangerine peel (TX), (3) strawberry (SO), and (4) sepals of strawberry (SX)). The sum of BVOC flux (${\sum}flux$ (BVOC) in ng/hr/g) for each sample was seen on the descending order of (1) TX=291,614, (2) TO=2,190, (3) SO=1,414, and (4) SX=2,093. If the results are compared between the individual components, the highest flux was seen from (R)-(+)-limonene (265,395 ng/hr/g) from TX sample.

삶은 달걀의 부패에 따른 부위별 냄새물질의 발생특성 연구 (Emission Characteristics of Odorous Gases with the Decay of Albumin and Yolk of Boiled Egg)

  • 김보원;김기현;김용현;안정현
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.95-109
    • /
    • 2014
  • In this study, the concentration of odorants released from albumin (EA) and yolk (EY) portions of boiled egg samples were determined as a function of storage time. The concentrations were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. As such, odorants produced during both fresh and decay conditions were measured through time. A total of 19 compounds were selected as the main target odorants along with 12 reference compounds. GC-MS (for VOC) and GC-PFPD system (for sulfur gases) equipped with thermal desorption (TD) system were employed for odorant analysis in this work. The initial concentrations measured from the chamber system were converted into flux terms ($ng{\cdot}g^{-1}{\cdot}min^{-1}$). The EA showed the highest concentration of $H_2S$ (234 $ng{\cdot}g^{-1}{\cdot}min^{-1}$) at EA-0, and the concentrations of AT (Acetone) was also seen clearly in the range of 11.7 (EA-0) to 58.6 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9). The EY showed similar patterns. EtAl (Ethyl alcohol) increased 9.47 (EA-1) to 96.7 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9) in EA samples. Ketone, alcohol, sulfur groups generally exhibited high concentrations compared to other odorants. These data were also compared in relation to olfactometry related dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test and sum of odor intensity (SOI).

600MPa급과 800MPa급 전용착금속의 미세조직에 따른 수소지연파괴 거동 (Microstructural Effects on Hydrogen Delayed Fracture of 600MPa and 800MPa grade Deposited Weld Metal)

  • 강희재;이태우;윤병현;박서정;장웅성;조경목;강남현
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.52-58
    • /
    • 2012
  • Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to-failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

Effect of surface quality on hydrogen/helium irradiation behavior in tungsten

  • Chen, Hongyu;Xu, Qiu;Wang, Jiahuan;Li, Peng;Yuan, Julong;Lyu, Binghai;Wang, Jinhu;Tokunaga, Kazutoshi;Yao, Gang;Luo, Laima;Wu, Yucheng
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.1947-1953
    • /
    • 2022
  • As the plasma facing material in the nuclear fusion reactor, tungsten has to bear the irradiation impact of high energy particles. The surface quality of tungsten may affect its irradiation resistance, and even affect the service life of fusion reactor. In this paper, tungsten samples with different surface quality were polished by mechanical processing, subsequently conducted by D2+ implantation and thermal desorption. D2+ implantation was performed at room temperature (RT) with the irradiation dose of 1 × 1021 D2+/m2 by 5 keV D2+ ions, and thermal desorption spectroscopy measurements were done from RT to 900 K. In addition, He irradiation was also performed by 50 eV He+ ions energy with the fluxes of 5.5 × 1021 m-2s-1 and 1.5 × 1022 m-2s-1, respectively. Results reveal that the hydrogen/helium irradiation behavior are both related to surface quality. Samples with high surface quality has superior D2+ retention behavior with less D2 retained after implantation. However, such samples are more likely to generate fuzzes on the surface after helium irradiation. Different morphologies (smooth, wavy, pyramids) after helium irradiation also demonstrates that the surface morphology is related to tungsten crystallographic orientation.

Design of High Stability Space Tube

  • Lee Deog-Gyu;Woo Sun-Hee;Lee Eung-Shik;Youn Heong-Sik;Paik Hong-Yul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.479-482
    • /
    • 2004
  • Laminate Design of a composite tube for a space telescope(Fig. 1) under hygrothermal load is studied. Carpet plots for laminate effective engineering constants are generated and used for selecting the best tube lay-ups satisfying the optomechanical requirements for a space telescope being dimensional1y stable under orbital thermal loading. Despace of the tubes constructed with the selected lay-ups are calculated with a Zig-Zag Triangular Element which accurately represents through thickness stress variations for laminated structures. The effects of moisture absorption when exposed to humidity environment and moisture desorption through outgassing on the dimensional stability are also investigated.

  • PDF

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제14권4호
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

A Study on the Distribution and Time Dependent Change of Wood Temperature by Solar Radiation

  • Xu, Hui Lan;Kang, Wook;Chung, Woo Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권2호
    • /
    • pp.141-147
    • /
    • 2009
  • The fluctuation of physical properties in wood or wood composites is an important subject when the materials in building and construction. Sorption and desorption occur in wood when exposed to the open air, and the temperature distribution in wood can fluctuate as a result of changes in environmental temperature, solar radiation, humidity, and wind velocity. In this study, the temperature difference and fluctuation caused by outdoor environment among different wood species were analyzed using a numerical method. The effect on the process of heat transfer in wood caused by environmental factors was investigated using 1-dimensional partial differential equation with real boundary and initial conditions. The experimental data have been used to check the accuracy of programming code. Through analysis, it was found out that density and moisture content have a negative effect on thermal diffusivity of wood.

De-NOx Characteristics of V2O5 SCR according to the Ratio of TiO2 Crystal Structures

  • Seo, Choong-Kil;Bae, Jaeyoung
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.26-32
    • /
    • 2015
  • The purpose of this study is to investigate the de-NOx performance characteristics according to the $TiO_2$ crystal structures ratio of $V_2O_5$ SCR catalysts. The anatase(100%) SCR catalyst showed the highest desorption peak of 80ppm at about $250^{\circ}C$, and $NH_3$ was not desorbed at $500^{\circ}C$. It can be confirmed that there was many $NH_3$ desorbed at a high temperature among other various crystal structures, which is because the catalyst was more acidized to increase the intensity of acid sites as the content of subacid sulfate ions($NH_2SO_4$) in the rutile phase increases. The anatase/rutile(7%/93%) SCR had the smallest width of de-NOx performance drop according to thermal aging, and had strong durability against thermal aging.