• Title/Summary/Keyword: The number of fault

Search Result 617, Processing Time 0.03 seconds

Improvement of Test Method for t-ws Falult Detect (t-ws 고장 검출을 위한 테스트 방법의 개선)

  • 김철운;김영민;김태성
    • Electrical & Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.349-354
    • /
    • 1997
  • This paper aims at studying the improvement of test method for t-weight sensitive fault (t-wsf) detect. The development of RAM fabrication technology results in not only the increase at device density on chips but also the decrease in line widths in VLSI. But, the chip size that was large and complex is shortened and simplified while the cost of chips remains at the present level, in many cases, even lowering. First of all, The testing patterns for RAM fault detect, which is apt to be complicated , need to be simplified. This new testing method made use of Local Lower Bound (L.L.B) which has the memory with the beginning pattern of 0(l) and the finishing pattern of 0(1). The proposed testing patterns can detect all of RAM faults which contain stuck-at faults, coupling faults. The number of operation is 6N at 1-weight sensitive fault, 9,5N at 2-weight sensitive fault, 7N at 3-weight sensitive fault, and 3N at 4-weight sensitive fault. This test techniques can reduce the number of test pattern in memory cells, saving much more time in test, This testing patterns can detect all static weight sensitive faults and pattern sensitive faults in RAM.

  • PDF

Thermo-hydraulic Modeling in Fault Zones (단층대에서의 열-수리적 거동 모델링)

  • Lee, Young-Min;Kim, Jong-Chan;Koo, Min-Ho;Keehm, Young-Seuk
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • High permeable faults are important geological structures for fluid flow, energy, and solute transport. Therefore, high permeable faults play an important role in the formation of hydrothermal fluid (or hot spring), high heat flow, and hydrothermal ore deposits. We conducted 2-D coupled thermal and hydraulic modeling to examine thermohydraulic behavior in fault zones with various permeabilities and geometric conditions. The results indicate discharge temperature in fault zones increases with increasing fault permeability. In addition, discharge temperature in fault zones is linearly correlated with Peclet number ($R^2=0.98$). If Peclet number is greater than 1, discharge temperature in fault zones can be higher than $32^{\circ}C$. In this case, convection is dominant against conduction for the heat transfer in fault zones.

Deterministic Measures of Fault-Tolerance in Recursive Circulants and Hypercubes (재귀원형군과 하이퍼큐브의 고장 감내에 대한 결정적 척도)

  • Park, Jung-Heum;Kim, Hee-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.9
    • /
    • pp.493-502
    • /
    • 2002
  • The connectivity and edge-connectivity have been the prime deterministic measure of fault tolerance in multicomputer networks. These parameters have a problem that they do not differentiate the different types of disconnected graphs which result from removing the disconnecting vertices or disconnecting edges. To compensate for this shortcoming, one can utilize generalized measures of connectedness such as superconnectivity, toughness, scattering number, vertex-integrity, binding number, and restricted connectivity. In this paper, we analyze such deterministic measures of fault tolerance in recursive circulants and hypercubes, and compare them in terms of fault tolerance.

A Pattern Comparison Algorithm for Pruning Fault Candidates (고장 대상 후보를 줄이기 위한 패턴 비교 알고리즘)

  • Cho, Hyung-Jun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.82-88
    • /
    • 2007
  • In this paper, we present a pattern comparison algorithm for reducing fault candidate lists. The number of fault candidates determines the total fault simulation time. To decrease the total fault diagnosis time, the reduction of the number of fault candidates is essential. Critical path tracing determines fault candidate lists detected by a set of tests using a backtracing algorithm starting at the primary outputs of a circuit. The proposed algorithm reduces fault candidates comparing failing patterns with good patterns during critical path tracing process. As we reduce all fault candidates of the circuit to more accurately suspected fault candidates, we can greatly reduce fault simulation time. The proposed algorithm greatly increases simulation speed than that of a conventional backtracing method. The proposed algorithm is applicable to both combinational and sequential circuits. Experimental results on ISCAS#85 and ISCAS#89 benchmark circuits showed fault candidates are pruned and fault diagnosis time is also decreased in proportion to fault candidate decrease.

Satellite Fault Detection and Isolation Scheme with Modified Adaptive Fading EKF

  • Lim, Jun Kyu;Park, Chan Gook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1401-1410
    • /
    • 2014
  • This paper presents a modified adaptive fading EKF (AFEKF) for sensor fault detection and isolation in the satellite. Also, the fault detection and isolation (FDI) scheme is developed in three phases. In the first phase, the AFEKF is modified to increase sensor fault detection performance. The sensor fault detection and sensor selection method are proposed. In the second phase, the IMM filer with scalar penalty is designed to detect wherever actuator faults occur. In the third phase of the FDI scheme, the sub-IMM filter is designed to identify the fault type which is either the total or partial fault. An important feature of the proposed FDI scheme can decrease the number of filters for detecting sensor fault. Also, the proposed scheme can classify fault detection and isolation as well as fault type identification.

Fault Current Limiting Characteristics of Resistive Type SFCL using Transformer (변압기를 이용한 저항형 고온초전도 전류제한기의 한류 특성)

  • 임성훈;최효상;고석철;이종화;강형곤;한병성
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.288-290
    • /
    • 2003
  • The transformer is expected to be an essential component of resistive type superconducting fault current limiter (SFCL) for both the increase of voltage ratings in SFCL and the simultaneous quench due to different critical current between HTSC elements. However, for the design to prevent the saturation of iron core and the effective fault current limitation, the analysis for operation of SFCL with consideration for the magnetization characteristics are required. In this paper, the fault current limiting characteristics related with the magnetization ones were investigated through the variation of the ratio of the number of turns in the 1st and the 2nd windings. The proper design condition with variation of the number of turns to make the effective fault current limiting operation could be determined.

  • PDF

Design of fault diagnostic system by using extended fuzzy cognitive map (확장된 퍼지인식맵을 이용한 고장진단 시스템의 설계)

  • 이쌍윤;김성호;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.860-863
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme. However, the previously proposed scheme has the problem of lower diagnostic resolution. In order to improve the diagnostic resolution, a new diagnostic scheme based on extended FCM which incorporates the concept of fuzzy number into FCM is developed in this paper. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and pattern matching scheme are also proposed.

  • PDF

A Study on Estimation Technique for Fault Location using Quadratic Interpolation in a Parallel Feeding AC Traction System (2차 보간법을 이용한 전기철도 급전계통의 고장점 산출 기법에 관한 연구)

  • Min, Myung-Hwan;An, Tae-Pung;Kwon, Sung-il;Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.599-604
    • /
    • 2017
  • Nowadays reactance method is being used as a technique for fault location in parallel feeding AC traction power system. However, implementation of this method requires a large number of field tests(ground fault) which is a huge burden on the operators. This paper presents a new estimation technique using quadratic interpolation to reduce number of times for field test and improves the accuracy of fault location. To verify a new technique, we solve AT feeding circuit and model it using PSCAD/EMTDC. Finally this paper conducts a comparative analysis of usefulness between a new technique and real field data.

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF