Thermo-hydraulic Modeling in Fault Zones

단층대에서의 열-수리적 거동 모델링

  • Published : 2009.12.28

Abstract

High permeable faults are important geological structures for fluid flow, energy, and solute transport. Therefore, high permeable faults play an important role in the formation of hydrothermal fluid (or hot spring), high heat flow, and hydrothermal ore deposits. We conducted 2-D coupled thermal and hydraulic modeling to examine thermohydraulic behavior in fault zones with various permeabilities and geometric conditions. The results indicate discharge temperature in fault zones increases with increasing fault permeability. In addition, discharge temperature in fault zones is linearly correlated with Peclet number ($R^2=0.98$). If Peclet number is greater than 1, discharge temperature in fault zones can be higher than $32^{\circ}C$. In this case, convection is dominant against conduction for the heat transfer in fault zones.

지층 내에 발달한 고투수성 단층은 유체, 에너지, 그리고 용질이 이동하는데 있어서 중요한 역할을 하는 지질구조이다. 따라서 고투수성 단층 주변부에서는 지열수(혹은 온천), 지열 이상대, 그리고 금속 광상 등이 형성될 가능성이 크다. 단층의 구조에 따른 지하수 유동과 이에 따른 지층 내의 열적 상태를 확인하기 위해서 단층 구조가 다른 세 가지의 경우에 대해서 이차원 열-수리적 거동 모델링을 수행하였다. 모델링 결과로부터 세 가지 모든 단층 구조의 경우에서 단층의 투수율이 커지면 단층대에서의 지하수 용출 온도가 초기 온도 보다 높아지는 경향을 확인 할 수 있다. Peclet number 와 단층대에서의 용출온도의 상관관계 분석으로부터 상관계수($R^2$)가 0.98로 상당히 높은 것을 확인하였다. Peclet number가 1이상 일 때 단층대에서는 약 $32^{\circ}C$ 이상의 온도가 용출되며 이러한 경우에 단층대에서의 열흐름은 매질을 통한 전도 보다는 지하수에 의한 대류의 영향이 큰 것으로 판단된다.

Keywords

References

  1. Anderson, M. P. (2005) Heat as a ground water tracer. Ground Water, v.43, p.951-968 https://doi.org/10.1111/j.1745-6584.2005.00052.x
  2. Bodvarsson, G. (1969) On the temperature of water flowingthrough fractures. Journal of Geophysical Research,v.74, p.1987-1992 https://doi.org/10.1029/JB074i008p01987
  3. Bodvarsson, G. S., Benson, S. M. and Witherspoon, P. A.(1982) Theory of the development of geothermal systemscharged by vertical faults. Journal of GeophysicalResearch, v.87, p.9317-9328 https://doi.org/10.1029/JB087iB11p09317
  4. Bodvarsson, G. S. and Tsang, C. F. (1982) Injection andthermal breakthrough in fractured geothermal reservoirs. Journal of Geophysical Research, v.87, p.1031-1048 https://doi.org/10.1029/JB087iB02p01031
  5. Braun, J., Munroe, S. M. and Cox S. F. (2003) Transientfluid flow in and around fault. Geofluids, v. 3, p. 81-87 https://doi.org/10.1046/j.1468-8123.2003.00051.x
  6. Cook, P. G. (2003) A guide to regional groundwater flowin fractured rock aquifers. CSIRO, 108p
  7. Deming, D. (2002) Introduction to hydrogeology. McGrawHill, New York, 468p
  8. Deming, D., Nunn, J. A. and Evans, D. G. (1990) Thermaleffects of compaction-driven groundwater flow fromoverthrust belts. Journal of Geophysical Research, v.95, p.6669-6683 https://doi.org/10.1029/JB095iB05p06669
  9. Ehlers, T. A. and Chapman, D. S. (1999) Normal faultthermal regimes: conductive and hydrothermal heattransfer surrounding the Wasatch fault. Utah, Tectonophysics,v.312, p.217-234 https://doi.org/10.1016/S0040-1951(99)00203-6
  10. Fairley, J. P. (2009) Modeling fluid flow in a heterogeneous,fault-controlled hydrothermal system. Geofluids,v.9, p.153-166 https://doi.org/10.1111/j.1468-8123.2008.00236.x
  11. Harcouet-Menou, V., Guillou-Frottier, L., Bonneville, A.,Adler, P. M. and Mourzenko, V. (2009) Hydrothermalconvection in and around mineralized fault zones:Insights from two- and three-demensional numericalmodeling applied to the Ashanti belt, Ghana. Geofluids,v.9, p.116-137 https://doi.org/10.1111/j.1468-8123.2009.00247.x
  12. Lee, Y. and Deming, D. (1998) Evaluation of thermal conductivitytemperature corrections applied in terrestrialheat flow studies. Journal of Geophysical Research,v.103, p.2447-2454 https://doi.org/10.1029/97JB03104
  13. Lopez, D. L. and Smith, L. (1995) Fluid flow in faultzones: Analysis of the interplay of convective circulationand topographically driven groundwater flow.Water Resources Research, v.31, p.1489-1503 https://doi.org/10.1029/95WR00422
  14. Lopez, D. L. and Smith, L. (1996) Fluid flow in faultzones: Influence of hydraulic anisotropy and heterogeneityon the fluid flow and heat transfer regime.Water Resources Research, v.32, p.3227-3235 https://doi.org/10.1029/96WR02101
  15. Samardzioska, T. and Popov, V. (2005) Numerical comparisonof the equivalent continuum, non-homogeneousand dual porosity models for flow and transportin fractured porous media. Advances in Water Resources, v.28, p.235-255 https://doi.org/10.1016/j.advwatres.2004.11.002
  16. Simms, M. A. and Garven, G. (2004) Thermal convectionin faulted extensional sedimentary basins: theoreticalresults from finite-element modeling. Geofluids, v.4,p.109-130 https://doi.org/10.1111/j.1468-8115.2004.00069.x
  17. Smith, L. and Chapman, D. S. (1983) On the thermaleffects of groundwater flow, 1. Regional scale systems,Journal of Geophysical Research, v.88, p.593-608 https://doi.org/10.1029/JB088iB01p00593
  18. Yang, J. (2006) Full e-D numerical simulation of hydrothermalfluid flow in faulted sedimentary basins:Example of the McArthur basin, northern Australia.Journal of Geochemical Exploration, v.89, p.440-444 https://doi.org/10.1016/j.gexplo.2005.11.080
  19. Yang. J., Large, R. R. and Bull, S. W. (2004) Factors controllingfree thermal convection in faults in sedimentarybasins: implications for the formation of zincleadmineral deposits. Geofluids, v.4, p.237-247 https://doi.org/10.1111/j.1468-8123.2004.00084.x
  20. Zhao, C., Hobbs, B. E., Ord, A., Hornby, P., Muhlhaus, H.and Peng, S. (2008) Theoretical and numerical analysesof pore-fluid flow focused heat transfer aroundgeological faults and large cracks. Computers and Geotechnics,v.35, p.357-371 https://doi.org/10.1016/j.compgeo.2007.06.011
  21. Zhao, C., Hobbs, B. E., Ord, A., Kuhn, M., Muhlhaus, H.B. and Peng, S. (2006) Numerical simulation of double-diffusion driven convective flow and rock alterationin three-dimensional fluid-saturated geologicalfault zones. Computer Methods in Applied Mechanicsand Engineering, v.195, p.2816-2840 https://doi.org/10.1016/j.cma.2005.07.008