• 제목/요약/키워드: The Stopping and Range of Ions in Matter (SRIM)

검색결과 9건 처리시간 0.024초

Depth Profiling에서 Sputtering Rate의 영향 (The influence of sputtering rate during depth profiling)

  • 김주광;성인복;김태준;오상훈;강석태
    • 한국진공학회지
    • /
    • 제12권3호
    • /
    • pp.162-167
    • /
    • 2003
  • 시료에 주입된 이온의 깊이방향에 따른 농도분포를 알아보기 위하여 시료표면을 sputtering 하면서 튀어나온 주입된 이온을 depth profiling한다. Depth profiling 측정 시에 깊이방향에 영향을 주는 sputtering rate가 변화하는 효과를 SRIM simulation을 이용하여 계산하였다. 시료에 이온이 주입하게 되면 시료의 원자밀도는 약간 증가하게 되는데, 그 결과로 sputtering yield가 변화하게 된다. 이러한 변화가 결과적으로 depth profile 측정시에 깊이방향에 영향을 줄 수 있는 sputtering rate를 변화시키는 원인이 된다. SRIM(Stopping and Range of Ions in Matter) Monte Carlo simulation code를 사용하여 이온주입에 의한 시료의 원자밀도의 변화에 따른 sputtering yield를 구하여 sputtering rate를 계산하고, 그 차이가 depth profiling 측정에서 깊이방향 분포에 영향을 줄 수 있다는 것을 확인하였다.

Selective Laser Melting 방식으로 적층제조된 Inconel 718 합금의 조사 경화 특성 (Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting)

  • 서주원;임상엽;진형하;천영범;강석훈;한흥남
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.431-435
    • /
    • 2023
  • An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ" precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nano-indentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

Focal Plane Damage Analysis by the Space Radiation Environment in Aura Satellite Orbit

  • Ko, Dai-Ho;Yeon, Jeoung-Heum;Kim, Seong-Hui;Yong, Sang-Soon;Lee, Seung-Hoon;Sim, Enu-Sup;Lee, Cheol-Woo;De Vries, Johan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.28.1-28.1
    • /
    • 2011
  • Radiation-induced displacement damage which has caused the increase of the dark current in the focal plane adopted in the Ozone Monitoring Instrument (OMI) was studied in regards of the primary protons and the secondaries generated by the protons in the orbit. By using the Monte Carlo N-Particle Transport Code System (MCNPX) version 2.4.0 along with the Stopping and Range of Ions in Matter version 2010 (SRIM2010), effects of the primary protons as well as secondary particles including neutron, electron, and photon were investigated. After their doses and fluxes that reached onto the charge-coupled device (CCD) were examined, displacement damage induced by major sources was presented.

  • PDF

Changes in superconducting properties of Nb films irradiated with Kr ion beam

  • Minju Kim;Joonyoung Choi;Chang-Duk Kim;Younjung Jo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권1호
    • /
    • pp.5-9
    • /
    • 2024
  • This study investigated the effect of Kr ion beam irradiation on the superconducting properties of Nb thin films, which are known for their high superconducting transition temperature (Tc) at ambient pressure among single elements. Using the Stopping and Range of Ions in Matter (SRIM) program, we analyzed the distribution of Kr ions and displacement per atom (DPA) after irradiation, finding a direct correlation between irradiation amount and DPA. In samples with stronger beam energy, deeper ion penetration, fewer ions remained, and higher DPA values were observed. X-ray diffraction (XRD) revealed that the Nb (110) peak at 38.5° weakened and shifted with increasing irradiation. Tc decreased in all samples after irradiation, more significantly in those with higher beam energy. Irradiation raised resistivity of the film and lowered the residual-resistivity ratio (RRR). AC susceptibility measurements were also consistent with these findings. This research could potentially lead to more efficient and powerful superconducting devices and a better understanding of superconducting materials.

중수소 이온 주입에 의한 MOS 커패시터의 게이트 산화막 절연 특성 개선 (Improvement of Gate Dielectric Characteristics in MOS Capacitor by Deuterium-ion Implantation Process)

  • 서영호;도승우;이용현;이재성
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.609-615
    • /
    • 2011
  • This paper is studied for the improvement of the characteristics of gate oxide with 3-nm-thick gate oxide by deuterium ion implantation methode. Deuterium ions were implanted to account for the topography of the overlaying layers and placing the D peak at the top of gate oxide. A short anneal at forming gas to nitrogen was performed to remove the damage of D-implantation. We simulated the deuterium ion implantation to find the optimum condition by SRIM (stopping and range of ions in matter) tool. We got the optimum condition by the results of simulation. We compare the electrical characteristics of the optimum condition with others terms. We also analyzed the electrical characteristics to change the annealing conditions after deuterium ion implantation. The results of the analysis, the breakdown time of the gate oxide was prolonged in the optimum condition. And a variety of annealing, we realized the dielectric property that annealing is good at longer time. However, the high temperature is bad because of thermal stress.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source Part One: Material characteristics acting as a carrier for boron compounds during neutron irradiation

  • Ezddin Hutli ;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2984-2996
    • /
    • 2023
  • A 100 kW thermal power pool-type light water reactor and Pu(Be) as a fast neutron source were used to determine the appropriate carrier for irradiating boron-containing samples with neutron beams. The tested materials (carriers) were subjected to neutron beams in the reactor's tangential channel. The geometrical arrangement of experimental facilities relative to the neutron beam trajectory, as well as the effect of sample thickness on the count rate, were investigated. The majority of the detectable charged particles emitted by the neutron beam's interaction with tested materials and the detector's detecting layer are protons (recoiled hydrogen) and particles generated in nuclear reactions (protons and alpha particles), respectively. Stopping and Range of Ions in Matter (SRIM) software was used to do theoretical calculations for the range of expected released particles in various materials, including human tissue. The results of measurement and calculation are in good agreement. According to experiments and theoretical calculations, the number of protons emitted by tissue-like materials may commit a dose comparable to that of boron capture reactions. Furthermore, the range of protons is significantly larger than that of alpha particles, which most probably changes dose distribution in healthy cells surrounding the tumor, which is undesirable in the BNCT approach.

Study on Proton Radiation Resistance of 410 Martensitic Stainless Steels under 3 MeV Proton Irradiation

  • Lee, Jae-Woong;Surabhi, S.;Yoon, Soon-Gil;Ryu, Ho Jin;Park, Byong-Guk;Cho, Yeon-Ho;Jang, Yong-Tae;Jeong, Jong-Ryul
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.183-186
    • /
    • 2016
  • In this study, we report on an investigation of proton radiation resistance of 410 martensitic stainless steels under 3 MeV proton with the doses ranging from $1.0{\times}10^{15}$ to $1.0{\times}10^{17}p/cm^2$ at the temperature 623 K. Vibrating sample magnetometer (VSM) and X-ray diffractometer (XRD) were used to study the variation of magnetic properties and structural damages by virtue of proton irradiation, respectively. VSM and XRD analysis revealed that the 410 martensitic stainless steels showed proton radiation resistance up to $10^{17}p/cm^2$. Proton energy degradation and flux attenuations in 410 stainless steels as a function of penetration depth were calculated by using Stopping and Range of Ions in Matter (SRIM) code. It suggested that the 410 stainless steels have the radiation resistance up to $5.2{\times}10^{-3}$ dpa which corresponds to neutron irradiation of $3.5{\times}10^{18}n/cm^2$. These results could be used to predict the maintenance period of SUS410 stainless steels in fission power plants.

한국형 사이클로트론(KOTRON-13)을 이용한 $[^{11}C]CO_2$ 생산과 다양한 $^{11}C$-표지 방사성의약품 생산 적용 (Production of $^{11}C$ labeled Radiopharmaceuticals using $[^{11}C]CO_2$ Produced in the KOTRON-13)

  • 이홍진;박준형;문병석;이인원;이병철;김상은
    • 핵의학기술
    • /
    • 제16권2호
    • /
    • pp.106-109
    • /
    • 2012
  • 최근 늘어나는 [$^{18}F$]FDG-PET 검사 증대와 더불어 새로운 방사성의약품으로 [$^{11}C$]아세테이트 검사가 신설되고 다양한 연구용 $^{11}C$-표지 방사성의약품 이용이 증대되고 있다. 본 연구에서는 성공리에 수행한 한국형 사이클로트론의 $^{11}C$-표적시스템을 이용하여, $[^{11}C]CO_2$ 생산 최적화 및 임상에서 사용가능한 $^{11}C$-표지 방사성의약품 생산 적용 연구를 수행하였다.

  • PDF

KOTRON-13 사이클로트론의 고효율C-11 가스 표적장치 (Development and optimization of C-11 gas target system in KOTRON-13 cyclotron)

  • 이홍진;이원경;박준형;문병석;이인원;채성기;이병철;김상은
    • 핵의학기술
    • /
    • 제15권1호
    • /
    • pp.86-89
    • /
    • 2011
  • 최근 들어 양전자방출단층촬영(positron emission tomography, PET) 대표적인 진단검사인 FDG (2-[$^{18}F$]fluoro-2-deoxy-D-glucose)를 이용한 전신암 및 장기별 대사 검사뿐만 아니라 또 다른 양전자 방출 동위원소 탄소-11로 표지 된 다양한 방사성의약품 사용이 증가될 예정이다. 본 논문에서는 현재 국내에 설치 보급되어있는 국산 KOTRON-13 사이클로트론에 냉각 성능이 개선된 탄소-11 표적 장치를 설계, 제작하고, 다양한 생산시험을 통하여 탄소-11의 생산량 증대를 입증 하였다. 성공적으로 기존의 불소-18 타겟과 새로운 탄소-11 타겟 호환장치를 도입하였고, 실험 결과 고효율 탄소-11표적 장치가 내수성이 우수하고, 30분 조사 시 최대 2,000 mCi를 생산하였다. 본 시험결과를 통해 향후 불소-18만이 생산 가능했던 국산 KOTRON-13 사이클로트론에 효율적이고 안정적으로 탄소-11생산 시스템을 도입할 수 있음을 증빙하였다.

  • PDF