The influence of sputtering rate during depth profiling

Depth Profiling에서 Sputtering Rate의 영향

  • Published : 2003.09.01

Abstract

To find the concentration according to the depth-direction of ions implanted in the sample, with sputtering of the sample surface, one needs the depth profiling of ion implanted in the sample. On measuring of depth profiling, the sputtering rate to affect depth direction, is calculated by SRIM simulation. When ion is implanted in the sample, the atomic density of the sample rises up a little, and it alters sputtering yield. This alteration then causes differences of sputtering rate to affect depth-direction, on measuring of depth profiling. With the usage of SRIM Monte Carlo simulation code, one calculates sputtering rate, with sputtering yield by the alteration of atomic density of the sample through ion implantation. As a result, it goes to prove that its difference affects depth distribution, on measuring of depth profiling.

시료에 주입된 이온의 깊이방향에 따른 농도분포를 알아보기 위하여 시료표면을 sputtering 하면서 튀어나온 주입된 이온을 depth profiling한다. Depth profiling 측정 시에 깊이방향에 영향을 주는 sputtering rate가 변화하는 효과를 SRIM simulation을 이용하여 계산하였다. 시료에 이온이 주입하게 되면 시료의 원자밀도는 약간 증가하게 되는데, 그 결과로 sputtering yield가 변화하게 된다. 이러한 변화가 결과적으로 depth profile 측정시에 깊이방향에 영향을 줄 수 있는 sputtering rate를 변화시키는 원인이 된다. SRIM(Stopping and Range of Ions in Matter) Monte Carlo simulation code를 사용하여 이온주입에 의한 시료의 원자밀도의 변화에 따른 sputtering yield를 구하여 sputtering rate를 계산하고, 그 차이가 depth profiling 측정에서 깊이방향 분포에 영향을 줄 수 있다는 것을 확인하였다.

Keywords

References

  1. Korea J. of Appl. Phys. v.11 Ungyong mulli C.H.Moon;D.W.Kang;S.T.Kang
  2. SRIM : The Stopping and Range of lons in Matter J.F.Ziegler;J.P.Biersack;U.Littmark
  3. Nucl. Instr. and Meth. B v.195 V.I.Shulga https://doi.org/10.1016/S0168-583X(02)01108-4
  4. Sputtering by Particle Bombardment I P.Sigmund;R.Behrisch(ed.)
  5. J. Vac. Sci. Technol. v.17 P.Sigmudd https://doi.org/10.1116/1.570399
  6. Nucl. Instr. and Meth. B v.71 N.Q.Lam;K.Johannessen https://doi.org/10.1016/0168-583X(92)95353-S
  7. Nucl. Instr. and Meth. B v.159 Y.Zhang;T.winzell;T.Zhang;I.A.Maximov;E.L.Sarwe;M.Graczyk;L.Montelius;H.J.Whitlow https://doi.org/10.1016/S0168-583X(99)00538-8
  8. Nucl. Instr. and Meth. v.182 P.Sigmund;A.Grass-Marti https://doi.org/10.1016/0029-554X(81)90668-6
  9. Nucl. Instr. and Meth. B v.159 Y.Zhang;T.winzell;T.Zhang;I.A.Maximov;E.L.Sarwe;M.Graczyk;L.Montelius;H.J.Whitlow https://doi.org/10.1016/S0168-583X(99)00550-9
  10. Secndary Oron Mass Spectrometry Princoples and Application J.C.Vickerman;A.Brown;N.M.Reed
  11. Nucl. Instr. and Meth. B v.161 V.Kyllonen;J.Ralsanen;A.Seppala;T.Ahlgren;J.Likonen https://doi.org/10.1016/S0168-583X(99)00756-9