DOI QR코드

DOI QR Code

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source Part One: Material characteristics acting as a carrier for boron compounds during neutron irradiation

  • Received : 2022.08.11
  • Accepted : 2023.04.25
  • Published : 2023.08.25

Abstract

A 100 kW thermal power pool-type light water reactor and Pu(Be) as a fast neutron source were used to determine the appropriate carrier for irradiating boron-containing samples with neutron beams. The tested materials (carriers) were subjected to neutron beams in the reactor's tangential channel. The geometrical arrangement of experimental facilities relative to the neutron beam trajectory, as well as the effect of sample thickness on the count rate, were investigated. The majority of the detectable charged particles emitted by the neutron beam's interaction with tested materials and the detector's detecting layer are protons (recoiled hydrogen) and particles generated in nuclear reactions (protons and alpha particles), respectively. Stopping and Range of Ions in Matter (SRIM) software was used to do theoretical calculations for the range of expected released particles in various materials, including human tissue. The results of measurement and calculation are in good agreement. According to experiments and theoretical calculations, the number of protons emitted by tissue-like materials may commit a dose comparable to that of boron capture reactions. Furthermore, the range of protons is significantly larger than that of alpha particles, which most probably changes dose distribution in healthy cells surrounding the tumor, which is undesirable in the BNCT approach.

Keywords

Acknowledgement

The first author would like to express his deepest appreciation to the NTI-BME training reactor staff for their outstanding assistance. His appreciation also goes to Dr. L. Duffek, SOTE Department of Radiology, Semmelweis Clinic, for his assistance. Prof. Czifrus Szabolcs, director of the Institute of Nuclear Techniques at Budapest University of Technology and Economics (NTI-BME), is also appreciated for his insightful comments. My heartfelt gratitude goes to the Ministry of Higher Education in the Great Libyan Arab Jamahiriya for funding this study at the NTI-BME reactor in Hungary.

References

  1. M. Balcerzyk, M. De-Miguel, Fernandez B. Carlos Guerrero C, Quantification of boron compound concentration for BNCT using positron emission Tomography, Cells 9 (2020) 1-11, https://doi.org/10.3390/cells9092084, 2022. 
  2. M. Suzuki, Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era, Int. J. Clin. Oncol. 25 (2019) 1-8, https://doi.org/10.1007/s10147-019-01480-4. 
  3. J.A. Coderre, G.M. Morris, The radiation biology of boron neutron capture therapy, Radiat. Res. 151 (1999) 1-18, 1999.  https://doi.org/10.2307/3579742
  4. G.M. Morris, J.A. Coderre, J.W. Hopewell, P.L. Micca, M.M. Nawrocky, H.B. Liu, A. Bywaters, Response of the central nervous system to boron neutron capture irradiation: evaluation using rat spinal cord model, Radiother. Oncol. 32 (1994) 249-255, 1994.  https://doi.org/10.1016/0167-8140(94)90024-8
  5. G. Ichikawa, K. Tsuchida, Y. Kiyanagi, A. Ishikawa, Y. Hirata, S. Yoshihashi, K. Watanabe, A. Uritani, T. Hamano, R. Ogawara, Development of thermal neutron moderator for testing boron agents for boron neutron capture therapy (BNCT), J. Instrum. 14 (2019) 1-11. https://iopscience.iop.org/article/10.1088/1748-0221/14/06/T06010/pdf. 
  6. Koji Ono, Prospects for the new era of boron neutron capture therapy and subjects for the future, Therapeutic Radiology and Oncology 2 (2018) 40-47, https://doi.org/10.21037/tro.2018.09.04, 2018. 
  7. L. Kankaanranta, K. Saarilahti, A. Makitie, P. Valimaki, M. Tenhunen, H. Joensuu, Boron neutron capture therapy (BNCT) followed by intensity modulated chemoradiotherapy as primary treatment of large head and neck cancer with intracranial involvement, Radiother. Oncol. 99 (2011) (2011) 98-99, https://doi.org/10.1016/j.radonc.2011.02.008. 
  8. T. Aihara, N. Morita, N. Kamitani, H. Kumada, K. Ono, J. Hiratsuka, T. Harada, BNCT for advanced or recurrent head and neck cancer, Appl. Radiat. Isot. 88 (2014) 12-15, 2014.  https://doi.org/10.1016/j.apradiso.2014.04.007
  9. T. Aihara, J. Hiratsuka, H. Ishikawa, H. Kumada, K. Ohnishi, N. Kamitani, M. Suzuki, H. Sakurai, T. Harada, Fatal carotid blowout syndrome after BNCT for head and neck cancers, Appl. Radiat. Isot. 88 (2015) 202-206.  https://doi.org/10.1016/j.apradiso.2015.08.007
  10. L.W. Wang, Y.W. Chen, C.Y. Ho, Y.W.H. Liu, E.I. Chou, Y.H. Liu, H.M. Liu, J.J. Peir, S.H. Jiang, C.W. Chang, C.S. Liu, S.J. Wang, P.Y. Chu, S.H. Yen, Fractionated BNCT for locally recurrent head and neck cancer: experience from a phase I/II clinical trial at tsing hua open-pool reactor, Appl. Radiat. Isot. 88 (2014) 64-68, 2014.  https://doi.org/10.1016/j.apradiso.2013.11.118
  11. L.L. Wang, Y.W.H. Hsueh Liu, F.-I. Chou, S.H. Jiang, Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the tsing-hua open pool reactor, Cancer Commun. 38 (2018), 32018, https://doi.org/10.1186/s40880-018-0295-y, 1-7. 
  12. R.F. Barth, M.G. Vicente, O.K. Harling, W.S. Kiger, K.J. Riley, P.J. Binns, F.M. Wagner, M. Suzuki, T. Aihara, I. Kato, S. Kawabata, Current status of boron neutron capture therapy of high-grade gliomas and recurrent head and neck cancer, Radiat. Oncol. 7 (2012) 146-167, https://doi.org/10.1186/1748-717X7-146. 
  13. H. He, J. Li, P. Jiang, S. Tian, H. Wang, R. Fan, J. Liu, Y. Yang, Z. Liu, J. Wang, The basis and advances in clinical application of boron neutron capture therapy, Radiat. Oncol. 16 (2021) 1-8, https://doi.org/10.1186/s13014-021-01939-7. 
  14. G.L. Locher, Biological effects and therapeutic possibilities of neutrons, Journal Roentgenol Radium Therapy 36 (1936) 1-13, 1936. 
  15. M. Carpano, G.S. Cruz, C. Rodriguez, S. Nievas, M.S. Olivera, M. Perona, E. Boggio, J. Longhino, M. Pisarev, G. Juvenal, M.A. Dagrosa, Experimental studies for the personalized application of boron neutron capture therapy to the treatment of cutaneous melanoma, Therapeutic Radiology and Oncology 5 (2021) 1-11, https://doi.org/10.21037/tro-20-61. 
  16. G.M. Morris, J.A. Coderre, J.W. Hopewell, P.L. Micca, M. Rezvani, Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium, Radiother. Oncol. 32 (1994) 144-153.  https://doi.org/10.1016/0167-8140(94)90101-5
  17. R.F. Barth, P. Mi, W. Yang, Boron delivery agents for neutron capture therapy of cancer, Cancer Commun. 38 (2018) 35-45, https://doi.org/10.1186/s40880-018-0299-7. 
  18. R.F. Barth, J.A. Coderre, M.G. Vicente, T.E. Blue, Boron neutron capture therapy of cancer: current status and future prospects, Clin. Cancer Res. 11 (2005) 3987-4002, https://doi.org/10.1158/1078-0432.ccr-05-0035. 
  19. F.Y. Yang, H.E. Wang, G.L. Lin, M.C. Teng, H.H. Lin, T.T. Wong, R.S. Liu, Micro-SPECT/CT-based pharmacokinetic analysis of 99mTc- diethylenetriaminepentaacetic acid in rats with blood-brain barrier disruption induced by focused ultrasound, J. Nucl. Med. 52 (2011) 478-484, https://doi.org/10.2967/jnumed.110.083071. 
  20. K. Hanaoka, T. Watabe, S. Naka, Y. Kanai, H. Ikeda, G. Horitsugi, H. Kato, K. Isohashi, E. Shimosegawa, J. Hatazawa, FBPA PET in boron neutron capture therapy for cancer: prediction of 10B concentration in the tumor and normal tissue in a rat xenograft model, EJNMMI Res. 4 (2014) 70-79.  https://doi.org/10.1186/s13550-014-0070-2
  21. Y. Imahori, S. Ueda, Y. Ohmori, K. Sakae, T. Kusuki, T. Kobayashi, M. Takagaki, K. Ono, T. Ido, R. Fujii, Advances in brief positron emission Tomography based boron neutron capture therapy using boronophenylalanine for high grade gliomas: Part-I, Clin. Cancer Res. 4 (1998) 1825-1832. 
  22. D. Skwierawska, M. Balcerzyk, J.A. Lopez-Valverde, A. Leal, Physical Bases of Boron Neutron Capture Therapy, Dosimetry, and its Mechanisms of Action - a Critical Overview of the Literature, vol. 1, 2021, pp. 1-19, https://doi.org/10.20944/preprints.202109.0453.v1. 
  23. H. Fukuda, C. Honda, N. Wadabayashi, T. Kobayashi, K. Yoshino, J. Hiratsuka, J. Takahashi, T. Akaizawa, Y. Abe, M. Ichihashi, Y. Mishima, Pharmacokinetics of 10 B - p - boronophenylalanine in tumours, skin and blood of melanoma patients: a study of boron neutron capture therapy for malignant melanoma, Melanoma Res. 9 (1999) 75-83.  https://doi.org/10.1097/00008390-199902000-00010
  24. T. Morita, H. Kurihara, K. Hiroi, N. Honda, H. Igaki, J. Hatazawa, Y. Arai, J. Itami, Dynamic changes in 18F-Borono-L-Phenylalanine uptake in unresectable, advanced, or recurrent squamous cell carcinoma of the head and neck and malignant melanoma during boron neutron capture therapy patient selection, Radiat. Oncol. 13 (2018) 1-6, s13014-017-0949-y.pdf. 
  25. Y. Imahori, S. Ueda, Y. Ohmori, K. Sakae, T. Kusuki, T. Kobayashi, M. Takagaki, K. Ono, T. Ido, R. Fujii, Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: Part II, Clin. Cancer Res. 4 (1998) 1833-1841. 
  26. T. Aihara, J. Hiratsuka, N. Morita, M. Uno, Y. Sakurai, A. Maruhashi, K. Ono, T. Harada, First clinical case of boron neutron capture therapy for head and neck malignancies using 18F-bpa PET, Head Neck 28 (2006) 850-855, https://doi.org/10.1002/hed.20418. 
  27. W. Sauerwein, R. Moss, Requirements for Boron Neutron Capture Therapy (BNCT) at a Nuclear Research Reactor, The European BNCT Project-Joint Research Centre, Institute for Energy and Transport, Publications Office, 2013, https://doi.org/10.2790/11743. https://data.europa.eu/doi/10.2790/11743. 
  28. E.M. Zsolnay, Sz Czifrus, Thermal neutron field for BNCT experiments at the nuclear reactor of TUB, in: Proceedings of the 7th International Symposium on Neutron Capture Therapy for Cancer, Zurich, Switzerland, 1996. 
  29. E.M. Zsolnay, O. Csuka, Sz Czifrus, BNCT Programme in Hungary, Requirements for Boron Neutron Capture Therapy (BNCT) at a Nuclear Research Reactor, The European BNCT Project EUR 23830 EN -, 2009, pp. 95-97, https://doi.org/10.2790/11743. https://op.europa.eu/en/publication-detail/-/publication/f4179a3b-ae37-46f8-9820-f0857d85c5fa/language-en. 
  30. G.Y. Csom, E.M. Zsolnay, E.J. Szondi, Investigation of neutron beams for the realization of boron neutron capture therapy, in: Proceedings of an International Workshop on Neutron Beam Design. Development. And Performance for Neutron Capture Therapy, at the Massachusetts Institute of Technology, Cambridge. Massachussetts USA, 1989, pp. 141-151. 
  31. G. Klujber, A. Horvath, Benchmark Description of the BME Training Reactor, Technical Report, Budapest University of Technology and Economics, Institute of Nuclear Techniques, 2019. BME-NTI-854/2018 v3.2(internal doc, www.reak.bme.hu. 
  32. B.K. Seo, Y.H. Jung, Z.H. Woo, G.H. Kim, W.Z. Oh, K.W. Lee, M.J. Han, Evaluation of Thin ZnS(Ag) Scintillator Sheet for Alpha-Ray Contamination Monitoring during Decommissioning, Transactions of the Korean Nuclear Society Autumn Meeting Busan, Korea, 2005. https://www.koreascience.or.kr/article/CFKO200533239313363.pdf. 
  33. S.K. Lee, S.Y. Kang, D.Y. Jang, C.H. Lee, S.M. Kang, B.H. Kang, W.G. Lee, Y.K. Kim, Comparison of new simple methods in fabricating ZnS(Ag) scintillators for detecting alpha particles, Progress in Nuclear Science and Technology 1 (2011) 194-197 194, pdf (aesj.net).  https://doi.org/10.15669/pnst.1.194
  34. R. Shweikani, A. Ismail, B. Jerby B, Preliminary study on the properties of zinc oxide (zno) for alpha particles detection, International Journal of Radiation Research 15 (2017) 302-306. http://ijrr.com/article-1-2062-en.pdf. 
  35. M.A. Misdaq, H. Moustaadine, A new method for determining the radon emanation coefficients and radon production rates in different building materials using solid state nuclear track detectors, J. Radioanal. Nucl. Chem. 218 (1997) 9-12.  https://doi.org/10.1007/BF02033966
  36. ZnS(Ag) zinc sulfide scintillation material, BICRON. http://www.hep.ph.ic.ac.uk/fets/pepperpot/docs+papers/zns_602.pdf. 
  37. M. Ardid, J.L. Ferrero, A. Herrero, Study of the background on a ZnS(Ag) alpha counter with a plastic veto detector, nuclear instrumentation and methods in physics, Research 557 (2006) 510-515. 
  38. G.F. Knoll, Radiation Detection and Measurement, John Willey and Sons, New York, 1999. 
  39. Hamamatsu Photonics K.K. editorial committee, Photomultiplier tubes, basic and applications, hamamatsu photonics K.K. Electron tube division, third ed. https://www.hamamatsu.com, 2007. 
  40. G.H. Kim, B.K. Seo, Z.H. Woo, Y.H. Jung, W.Z. Oh, K.W. Lee, Determination of the Optimum Counting Condition of a ZnS(Ag) Scintillation Detector for Contamination Monitoring, Transactions of the Korean Nuclear Society Autumn Meeting Busan, Korea, 2005. 
  41. G.D. Chase, J.L. Rabinowitz, Principles of Radioisotope Methodology, Burgess Publishing Company, Minneapolis, 1967. 
  42. R.T. Overman, H.M. Clark, Radioisotope Techniques, McGraw-Hill, New York, 1960. 
  43. S.A. McElhaney, J.A. Ramsey, M.L. Bauer, M.M. Chiles, A ruggedized ZnS(Ag)/ Epoxy alpha scintillation detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 299 (1990) 111-114.  https://doi.org/10.1016/0168-9002(90)90758-X
  44. SA-100TM, Alpha prob, MIRION technologies. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/c36939_sa_100_super_spec_2.pdf?1562763586. 
  45. J.F. Ziegler, M.D. Ziegle, J.B. Biersack, Srim - the stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 1818-1823.  https://doi.org/10.1016/j.nimb.2010.02.091
  46. J.F. Ziegler, J.M. Manoyan, The stopping of ions in compounds, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 35 (1988) 215-228.  https://doi.org/10.1016/0168-583X(88)90273-X
  47. X. Cheng, F. Li, L. Liang, Boron neutron capture therapy: clinical application and research progress, Curr. Oncol. 29 (2022) 7868-7886, https://doi.org/10.3390/curroncol29100622. 
  48. K. Nedunchezhian, N. Aswath, M. Thiruppathy, S. Thirugnanamurthy, Boron neutron capture therapy - a literature review, J. Clin. Diagn. Res. 10 (2016) ZE01-ZE04, https://doi.org/10.7860/JCDR/2016/19890.9024. 
  49. F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry Neutron Interactions and Dosimetry, WILEY-VCH Verlag GmbH & Co. KGaA, 2004, pp. 463-505 (Chapter 16).