DOI QR코드

DOI QR Code

Determination of escape rate coefficients of fission products from the defective fuel rod with large defects in PWR

  • Pengtao Fu (China Nuclear Power Technology Research Institute Co., Ltd.)
  • Received : 2022.10.07
  • Accepted : 2023.05.01
  • Published : 2023.08.25

Abstract

During normal operation, some parts of the fission product in the defective fuel rods can release into the primary loops in PWR and the escape rate coefficients are widely used to assess quantitatively the release behaviors of fission products in the industry. The escape rate coefficients have been standardized and have been validated by some drilling experiments before the 1970s. In the paper, the model to determine the escape rate coefficients of fission products has been established and the typical escape rate coefficients of noble gas and iodine have been deduced based on the measured radiochemical data in one operating PWR. The result shows that the apparent escape rate coefficients vary with the release-to-birth and decay constants for different fission products of the same element. In addition, it is found that the escape rate coefficients from the defective rod with large defects are much higher than the standard escape rate coefficients, i.e., averagely 4.4 times and 1.8 times for noble gas and iodine respectively. The enhanced release of fission products from the severe secondary hydriding of several defective fuel rods in one cycle may lead to the potential risk of the temporary shutdown of the operating reactors.

Keywords

Acknowledgement

Thanks to Lan Fang and Zhaowen Zhu in Nuclear and Radiation Safety Center (MEE) for the suggestions on the formula used in the analysis, and Zhijun Li and Huaibin Li in China Nuclear Power Technology Research Institute Co. Ltd for their discussions several years ago.

References

  1. T. Anegawa, P. Brighton, S. Langenbuch, N. Lauben, A. Meneley D Oliot, T. Saito, S. Stelletta, H. Tezuka, Design of the Reactor Core for Nuclear Power Plants. Safety Guide, International Atomic Energy Agency, Vienna (Austria), 2005 (Safety Standard No. 1.12).
  2. A. Aqrawi, Bertran de Balanda, E.-R. Bonnet, J. Boogaard, F. Curca-Tivig, P. Descot, L. Dickson, M. Dietrich, K. Grabelnikov, et al., Quality and Reliability Aspects in Nuclear Power Reactor Fuel Engineering (NF-G-2.1), International Atomic Energy Agency, Vienna (Austria), 2015.
  3. A. Terrani Kurt, Steven J. Zinkle, Lance Lewis Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (1-3) (2014) 420-435. https://doi.org/10.1016/j.jnucmat.2013.06.041
  4. J.M. Alonso Pacheco, J. Armstrong, J. Bertsch, S.M. Bragg-Sitton, P.K. Chan, S. Choithramani Becerra, V. Chrapciak, et al., Review of Fuel Failures in Water Cooled Reactors (2006-2015), International Atomic Energy Agency, Vienna (Austria), 2019.
  5. P. Cohen, The Shippingport pressurized water reactor (Chapter 7) Chemistry, in: Westinghouse Bettis Plant and T. J. Iltis, Addison-Wesley publishing, 1958 (U. S. Atomic Energy Commission).
  6. J.D. Eichenberg, P.W. Frank, T.J. Kisiel, B. Lustman, K.H. Vogel, Effects of Irradiation on Bulk UO2 (WAPD-183), Bettis Plant, Pittsburgh, Pennsylvania, 1957.
  7. G.M. Allison, H.K. Rae, The Release of Fission Gases and Iodines from Defected UO2 Fuel Elements of Different Lengths (AECL-2206), Atomic Energy of Canada Limited, 1965.
  8. W.D. Fletcher, L.F. Picone, Fission Products from Fuel Defect Tests at Saxton, Westinghouse Atomic Power Divisions, 1966.
  9. U.S. Atomic Energy Commission, Final Environmental Statement Concerning Proposed Rule Making Action: Numerical Guides for Design Objectives and Limiting Conditions for Criterion "As Low as Practicable" for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents (WASH1258), U.S. Atomic Energy Commission, 1973.
  10. Westinghouse, AP1000 Design Control Document "11, Radioactive Waste Management", 2012. www.nrc.gov/docs/ML1117/ML11171A346.pdf.
  11. N.P. AREVA, U.S. EPR Final safety analysis report " 11.0 Radioactive Waste Management", www.nrc.gov/docs/ML1322/ML13220A883.pdf, 2013.
  12. KEPCO (Korea Electric Power Corporation) and KHNP (Korea Hydro & Nuclear Power Co Ltd), Design Control Document (DCD) of APR1400 "Chapter 11 Radioactive Waste Management", 2018. https://www.nrc.gov/docs/ML1807/ML18078A016.pdf.
  13. B.J. Lewis, P.K. Chan, A. El-Jaby, F.C. Iglesias, A. Fitchett, Fission product release modelling for application of fuel-failure monitoring and detection - an overview, J. Nucl. Mater. 489 (2017) 64-83. https://doi.org/10.1016/j.jnucmat.2017.03.037
  14. H.K. Yoona, Y.S. Kima, K.Y. Kim, S.T. Yang, Evaluation on codes to estimate the number of failed rods using Korean PWR activity data, in: Transactions of the Korean Nuclear Society Autumn Meeting (2010) Jeju, Korea, October 21-22, 2010. http://www.kns.org/files/pre_paper/7/42윤학규.pdf.
  15. R. Beraha, G. Beuken, G. Frejaville, C. Leuthrot, Y. Musante, Fuel survey in the light water reactors based on the activity of the fission products, Nucl. Technol. 49 (3) (1980) 426-434. https://doi.org/10.13182/NT80-A17690
  16. D. Parrat, J.B. Genin, Y. Musante, C. Petit, A. Harrer, Failed Rod Diagnosis and Primary Circuit Contamination Level Determination, Thanks to the DIADEME Code, 2003. IAEA-TECDOC-1345), March 2003.
  17. J.B. Genin, T. Jobert, N. Engler, The OSCAR-FP V1. 4 code simulation of fission product and alpha emitter contamination in PWR circuits, in: Proc. 21st Int. Conf. on Water Chemistry in Nuclear Reactor Systems (NPC 2018), San Francisco vol. 14, Cal., 2018. Sept. 9.
  18. A. Tigeras, F. Delcoigne, Merlin: modeling fuel defects at EDF power plants, in: International Conference on Water Chemistry of Nuclear Reactor Systems, 2004. San Francisco. 2004.
  19. A. Tigeras, D. Baron, F. Delcoigne, Improvement of fuel failure assessment based on radio chemical parameters (MERLIN code) taking in account the thermal mechanical fuel rod calculations (CYRANO3 code), in: International Conference on Water Chemistry of Nuclear Reactor Systems, 2006. San Francisco. 2006.
  20. D.L. Burman, O.A. Correal, H.W. Wilson, H. Kunishi, L.H. Boman, Development of a coolant activity evaluation model and related application experience, in: Proc. Int. Top. Mtg. LWR Fuel Performance, American Nuclear Society, Avignon, France, 1991, p. 363, 1991.
  21. Westinghouse, Fission product analysis. NF-FE-0037. www.westinghousenuclear.com, 2011.
  22. B. Cheng, CHIRON for WINDOWS - User's Manual: A Code for Analyzing Coolant and Offgas Activity in a Light Water Nuclear Reactor (CM-110056), EPRI, Palo Alto, CA, 1998.
  23. C.E. Beyer, An analytical model for estimating the number and size of defected fuel rods in an operating reactor, in: Proceedings of LWR Fuel Performance, 1991, p. 437. Paris, 1991.
  24. V. Likhanskii, I. Evdokimov, A. Sorokin, V. Kanukova, A. Khromov, E. Afanasieva, Failed fuel diagnosis during WWER reactor operation using the RTOP-CA code, in: Proceedings of the 6th International Conference on WWER Fuel Performance "Modelling and Experimental Support, 2005, p. 19-23. Albena, Bulgaria.
  25. B.J. Lewis, J.G. Russell, Christopher WT. Che, A prototype expert system for the monitoring of defected nuclear fuel elements in Canada deuterium uranium reactors, Nucl. Technol. 98 (3) (1992) 307-321. https://doi.org/10.13182/NT92-A34661
  26. B.J. Lewis, C.R. Phillips, M.J.F. Notley, A model for the release of radioactive krypton, xenon, and iodine from defective UO2 fuel elements, Nucl. Technol. 73 (1) (1986) 72-83. https://doi.org/10.13182/NT86-A16203
  27. K. Yang-Hyun, S. Dong-Seong, Y. Young-Ku, Release of unstable fission products from defective fuel rods to the coolant of a PWR, J. Nucl. Mater. 209 (3) (1994) 248-258. https://doi.org/10.1016/0022-3115(94)90259-3
  28. Chun Moon-Hyun, -IL Tak Nam, Sang-Kyu Lee, Development of a computer code to estimate the fuel rod failure using primary coolant activities of operating PWRs, Ann. Nucl. Energy 25 (10) (1998) 753-763. https://doi.org/10.1016/S0306-4549(97)00126-6
  29. P. Fu, S. Liang, S. Lu, W. Zhou, X. Yang, J. Xu, S. Han, Relationship between fuel reliability and I-131/I-133 in the primary coolant of CPR1000 PWRs, Front. Energy Res. 10 (2022), 860480, https://doi.org/10.3389/fenrg.2022.860480.
  30. K.T. Kim, Relation between a fuel rod failure cause and a reactor coolant radioactivity variation, Nucl. Eng. Des. 248 (2012) 156-168. https://doi.org/10.1016/j.nucengdes.2012.03.051
  31. L. Alvarez, T. Daniels, D. Dangouleme, F. Doria, K. Edsinger, S. Fujiwara, et al., Review of Fuel Failures in Water Cooled Reactor (NF-T-2.1), International Atomic Energy Agency, Vienna (Austria), 2010.
  32. Y.S. Skim, Fission gas release from UO2+x in defective light water reactor fuel rods, Argonne National Lab (1999). http://inis.iaea.org/collection/NCLCollectionStore/_Public/31/049/31049220.pdf.
  33. B.J. Lewis, B. Szpunar, F.C. Iglesias, Fuel oxidation and thermal conductivity model for operating defective fuel rods, J. Nucl. Mater. 306 (1) (2002) 30-43. https://doi.org/10.1016/S0022-3115(02)01231-X
  34. B.J. Lewis, W.T. Thompson, F. Akbari, D.M. Thompson, C. Thurgood, J. Higgs, Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel, J. Nucl. Mater. 328 (2e3) (2004) 180-196. https://doi.org/10.1016/j.jnucmat.2004.04.336
  35. A. Tigeras, M. Bachet, H. Catalette, E. Simoni, Fuel Failure Detection, Characterization and Modelling: Effect on Radionuclide Behaviour in PWR Primary Coolant. Doctoral Dissertation, Paris XI University, 2009.
  36. Howard E. Sims, Shirley Dickinson, Fission Product Iodine Behaviour in Sizewell B Coolant" in Proceeding of International Conference on Water Chemistry of Nuclear Reactor Systems, 2010 (Ontario Canada).
  37. P. Zeh, M. Schienbein, A. Bleier, W. Schwarz, M. Rosskamp, Alphanuclides in nuclear power plants, VGB PowerTech 88 (5) (2008) 74-78.
  38. X. Wang, F. Chu, Z. Liang, PIE and Cause Analysis of the Failed AFA-3G Fuel Rods, Annual report for China Institute of Atomic Energy, 2016, pp. 133-135.
  39. Agnes Stutzmann, Specifications chimiques et radiochimiques: Centrales REP, Electricite de France, 1997.