• Title/Summary/Keyword: The Shaft system

Search Result 1,125, Processing Time 0.024 seconds

A Study on Shaft Alignment of the Rotating Machinery by using Strain Gages (스트레인게이지를 이용한 회전체의 축정렬 연구)

  • 나상수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.63-68
    • /
    • 1999
  • Because misaligned shafts have caused noise, vibration, bearing failures, and stress concentration of coupling part, which decrease the efficiency and life of a shaft system, the proper alignment of shaft system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition, a telemetry system is this study is used to find the condition of the least bending moment, which is known by analyzing the structure and stress induced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as dynamic state with 100~700 rpm.

  • PDF

Vibration Analysis of a Moving Mass Travelling on the Timoshenko Rotating Shaft (티모센코 회전축을 따라 움직이는 질량의 진동해석)

  • Park, Yong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.859-864
    • /
    • 2008
  • The dynamic interaction between the moving mass and the rotating Timoshenko shaft is investigated. The moving speed of the mass is presented by a constraint equation related to the rotating speed of the shaft. The dimensionless equations of motion for the rotating shaft with a moving mass by using the Timoshenko's beam theory. The dynamic responses of this system are studied. influences of dimensionless parameters such as the rotating speed ratio. the Rayleigh coefficient and the dimensionless axial force are discussed on the transient response and the maximum deflection of the moving system.

Nondimensional Parametric Study of a Timoshenko Rotating Shaft Subject to Moving Mass and Compressive Axial Forces (이동질량과 압축력을 받는 티모센코 회전축의 무차원 변수 연구)

  • Park, Yong-Suk;Hong, Sung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1201-1207
    • /
    • 2007
  • The Timoshenko beam theories are used to model the rotating shaft. The nondimensional equations of motion for the rotating shaft subjected to moving mass and compressive axial forces are derived by using Hamilton's principle. Influence of system parameters such as the speed ratio. the mass ratio and the Rayleigh coefficient is discussed on the response of the moving system. The effects of compressive axial forces are also included in the analysis. The results are presented and compared with the available solutions of a rotating shaft subject to a moving mass and a moving load.

The Shape Optimal Design of Shaft Serration Using Design of Experiment and Finite Element Method (실험계획법과 유한요소법을 이용한 주축계의 세레이션 형상 최적설계)

  • Kim, Eui-Soo;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.72-79
    • /
    • 2008
  • To meet demand of big capacity and high speed rotation for washing machine, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Shafting system is mainly divided into flange and shaft. Shaft and flange connected by inserting shaft serration into flange on the process of die casting. When the system is operating, the gap is formed between serration and flange. But, Serration has various design factors and the optimal values can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), this study was performed investigating the interaction effect between the various design factors as well as the main effect of the each design factor under bending, twist and vibration and proposed optimum design using box-behnken method among response surface derived from regression equation of simulation-based DOE.

Numerical Study on Evaluation of Design Parameters of Intermediate Shaft in Steering System (조향장치용 인텀 샤프트 설계변수 평가를 위한 수치적 연구)

  • Kang, Young Su;Doo, Min Soo;Kim, Jeong;Kang, Beom Soo;Song, Woo Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1351-1359
    • /
    • 2012
  • Due to the development of electric and hybrid vehicles, the trend has changed from hydraulic power steering system to electric power steering system (EPS). In this paper, design parameters are deduced through the structural analysis based on the finite element analysis for the intermediate shaft of the EPS on the market. By analyzing the design parameters, the structure design is improved to support the required high torque on the EPS. The numerical analysis is performed to obtain the improved design of the intermediate shaft model and the analysis results are compared with the existing model. It is noted through this numerical approach that the improved design of the intermediate shaft can be acquired the structural safety and high stiffness than existing model.

Bi-spectrum for identifying crack and misalignment in shaft of a rotating machine

  • Sinha, Jyoti K.
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.47-60
    • /
    • 2006
  • Bi-spectrum is a tool in the signal processing for identification of non-linear dynamic behvaiour in systems, and well-known for stationary system where components are non-linearly interacting. Breathing of a crack during shaft rotation is also exhibits a non-linear behaviour. The crack is known to generate 2X (twice the machine RPM) and higher harmonics in addition to 1X component in the shaft response during its rotation. Misaligned shaft also shows similar such feature as a crack in a shaft. The bi-spectrum method has now been applied on a small rotating rig to observe its features. The bi-spectrum results are found to be encouraging to distinguish these faults based on few experiments conducted on a small rig. The results are presented here.

The Experimental and Basic Study on Torsional Vibration of Horizontal Rotating Shaft using a Laser Measuring Equipment (레이저 계측기를 이용한 축의 비틀림 진동에 관한 실험적 기초 연구)

  • Park, I.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • In this study, the nose of cam in the automobile engine was modelled into circular disk to analyze the torsional vibration of the cam shaft. The distance between disks was fixed, but the diameter of disks was changed. The torsional vibration of the cam shaft was studied experimentally by the motion of the modelled disk with changing the disk diameter. And the sizes of the modelled disk were selected not to show the natural frequencies over all the experimental ranges. The torsional vibration meter used in this study has a laser system with non-contact measurement method, which can measure both torsional angular vibration velocity and torsional angular vibration displacement simultaneously. The Experimental analysis shows that the characteristics of the torsional vibration in the horizontal rotating shaft can be considerably affected by the arrangement of the modelled disks.

  • PDF

STRUCTURAL SAFTY EVALUATION OF COMPRESSOR DRIVING MOTOR SHAFT SYSTEM (컴프레서 구동용 전동기 축계의 구조 안전성 평가)

  • Jung, Kun-Hwa;Kwak, Ju-Ho;Kim, Byung-Joo;Lee, Jong-Moon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1031-1036
    • /
    • 2007
  • Torsional vibration analysis is necessary at design stage to ensure the reliability of a system particularly when the driven machine is a reciprocating compressor. This paper contains the results of torsional vibration analysis and fatigue strength evaluation for 540 kW compressor driving motor. Torsional vibration analysis showed that the $2^{nd}$ torsional mode of the entire shaft system has the possibility of resonance with the $14^{th}$ order excitation of compressor and twin line frequency of motor at operating speed. Therefore, the analyses were required to ensure the structural reliability of the motor. The fatigue strength was evaluated for the shaft and inner fans using the results of forced vibration analysis. It is concluded that the motor has sufficient fatigue strength under normal operating condition.

  • PDF

Reliability life evaluation of gear driving system for the intermediate shaft (중간축을 고려한 기어구동장치의 신뢰수명 평가)

  • 김하수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.147-153
    • /
    • 2000
  • This paper presents a design method using CAE(Computer Aided Engineering ) with the consideration of reliability for optimal gear driving system. This method considered a configuration of the intermediate shaft. There are four mounting types, such as double straddle, double overhung, output gear overhung, and input ger overhung in the intermediate shaft. The reliability and life analysis are based on the two-parameter Weigbull distribution lives of the gears and bearing . The validity and feasibility of the proposed method are verified by the application to transmission of a industry machine.

  • PDF

Effects of Main Shaft Velocity on Turbidity and Quality of White Rice in a Rice Processing System

  • Cho, Byeong-Hyo;Kang, Tae-Hwan;Won, Jin-Ho;Kang, Shin-Hyeong;Lee, Hee-Sook;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • Purpose: The purpose of this study is to analyze turbidity and quality characteristics of white rice as a function of main shaft blast velocity and to verify the optimum processing conditions in the cutting type white rice processing system (CTWRPS). Methods: Sindongjin, one of the rice varieties, which used to be produced in Gimje-si, Jeollabuk-do, in 2015, was used as the experimental material. Turbidity and quality characteristics of white rice were measured at three different main shaft blast velocities: 25, 30, and 35 m/s. The amount of test material used for a single experiment was 20 kg, and after processing, whiteness was found to be $42.5{\pm}0.5$, following which, turbidity and quality characteristics were measured. Results: Turbidity decreased with increase in the shaft blast velocity, and as a result, was lowest at 35 m/s of shaft blast velocity among all the other experiment velocities. The trend of cracked rice ratios was similar to the turbidity. Broken rice ratio turned out to be less than 2.0% in all the test conditions. In the first stage of processing, the processing pressure decreased as the main shaft blast velocity increased. Additionally, in the second stage of processing, the processing pressure was at its lowest value at the main shaft blast velocity of 35 m/s. Energy consumption, too, decreased as the main shaft blast velocity was increased. Conclusions: From the above results, it is concluded that the main shaft blast velocity of 35 m/s is best for reducing turbidity and producing high quality rice in a CTWRPS.