• Title/Summary/Keyword: The Law of Inertia

Search Result 61, Processing Time 0.024 seconds

Inertia Estimation of Spacecraft Based on Modified Law of Conservation of Angular Momentum

  • Kim, Dong-Hoon;Choi, Dae-Gyun;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.353-357
    • /
    • 2010
  • In general, the information of inertia properties is required to control a spacecraft. The inertia properties are changed by some activities such as consumption of propellant, deployment of solar panel, sloshing, etc. Extensive estimation methods have been investigated to obtain the precise inertia properties. The gyro-based attitude data including noise and bias needs to be compensated for improvement of attitude control accuracy. A modified estimation method based on the law of conservation of angular momentum is suggested to avoid inconvenience like filtering process for noise-effect compensation. The conventional method is modified and beforehand estimated moment of inertia is applied to improve estimation efficiency of product of inertia. The performance of the suggested method has been verified for the case of STSAT-3, Korea Science Technology Satellite.

Partial adaptive control of PMDC motor in the tracking system under the variation of moment of inertia (추적 시스템에 있어서 관성 모멘트 변화를 고려한 PMDC 모터의 부분 적응 제어)

  • 신성호;김종준;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.506-509
    • /
    • 1986
  • In this paper, the control law for the system that has the variation of moment of inertia is designed. The proposed method is that the control input is obtained by using optimal PI control and partial adaptive control. The partial adaptive control input is adjusted by estimating the variational quantity of moment of inertia. This result gives us significant improvement of tracking ability.

  • PDF

How the Geometries of Newton's Flat and Einstein's Curved Space-Time Explain the Laws of Motion

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • This essay elucidates the way the geometries of space-time theories explain material bodies' motions. A conventional attempt to interpret the way that space-time geometry explains is to consider the geometrical structure of space-time as involving a causally efficient entity that directs material bodies to follow their trajectories corresponding to the laws of motion. Newtonian substantival space is interpreted as an entity that acts but is not acted on by the motions of material bodies. And Einstein's curved space-time is interpreted as an entity that causes the motions of bodies. This essay argues against this line of thought and provides an alternative understanding of the way space-time geometry explain the laws of motion. The workings of the way that Newton's flat and Einstein's curved space-time explains the law of motion is such that space-time geometry encodes the principle of inertia which specifies straight lines of moving bodies.

Robust Adaptive Control Simulation of Wire-Suspended Parallel Manipulator

  • Farahani, Hossein S.;Kim, Bo-Hyun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.46-51
    • /
    • 2004
  • This paper presents an adaptive control method based on parameter linearization for incompletely restrained wire-suspended mechanisms. The main purpose of this control method is utilizing it in a walking assist service robot for elderly people. This method is computationally simple and requires neither end-effector acceleration feedback nor inversion of estimated inertia matrix. In the proposed adaptive control law, mass, moment of inertia and external force and torque on the end-effector are considered as components of parameter adaptation vector. Nonlinear simulation for walking an elderly shows the effectiveness of the parameter adaptation law.

  • PDF

Robust and Optimal Attitude Control Law Design for Spacecraft with Inertia Uncertainties

  • Park, Yon-Mook;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 2002
  • This paper considers the robust and optimal three-axis attitude stabilization of rigid spacecraft with inertia uncertainties. The attitude motion of rigid spacecraft described in terms of either the Cayley-Rodrigues parameters or the Modified Rodrigues parameters is considered. A class of robust nonlinear control laws with relaxed feedback gain structures is proposed for attitude stabilization of rigid spacecraft with inertia uncertainties. Global asymptotic stability of the proposed control laws is shown by using the LaSalle Invariance Principle. The optimality properties of the proposed control laws are also investigated by using the Hamilton-Jacobi theory. A numerical example is given to illustrate the theoretical results presented in this paper.

A stable composite controller design for flexible joint robot manipulators (탄성관절을 갖는 로보트 매니퓰레이터의 안정한 합성제어기 설계)

  • 이만형;백운보;이권순;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.266-271
    • /
    • 1992
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate the additional stabilizing control law with sliding property. The singularly perturbated models include inertia moments functions of the deformations of actuator. The newly defined fast controller variable is computed from the corrected reduced-order model without additional computational loads. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than conventional one, and especially effective for the manipulator with high joint-flexibilities.

  • PDF

Five layers in turbulent pipe flow (난류 파이프 유동 내 다섯 개의 영역)

  • Ahn, Junsun;Hwang, Jinyul
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • Five layers in mean flow are proposed by using the direct numerical simulation data of turbulent pipe flow up to Reτ = 3008. Viscous sublayer, buffer layer, mesolayer, log layer and core region are investigated. In the buffer layer, the viscous force is counterbalanced by the turbulent inertia from the streamwise mean momentum balance, and a log law occurs here. The overlap layer is composed of the mesolayer and the log layer. Above the buffer layer, the non-negligible viscous force causes the power law, and this region is the mesolayer, where it is the lower part of the overlap layer. At the upper part of the overlap layer, where the viscous force itself becomes naturally negligible, the log layer will appear due to that the acceleration force of the large-scale motions increases as the Reynolds number increases. In the core region, the velocity-defect form is satisfied with the power-law scaling.

Analysis to reduce the acceleration time and deceleration time of direct drive robot (직접구동형로봇의 가감속시간 단축에 관한 연구)

  • 임규영;이광남;고광일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.372-376
    • /
    • 1990
  • This paper represents a control method of improving the performance of direct drive robot. The direct transfer of torque and rotational speed of direct drive motor to the robot body without reduction gear makes the robot speed fast. However, the variation of inertia matrix and low friction cause the control difficult, and one more effort must be in the reducing the acceleration and deceleration time to reduce the cycle time. To fasten the cycle time and to improve the robustness of robot, one control method is developed, and implemented in the Goldstar DD robot. This method does not need to change the conventional PI type control structure, but one additional compensational control law is required. The control law can be obtained via inverse dynamic model of robot, and inverse model of existing control loop. The effects of this control law are shown in this paper.

  • PDF

Vibrations and thermal stability of functionally graded spherical caps

  • Prakash, T.;Singh, M.K.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.447-461
    • /
    • 2006
  • Here, the axisymmetric free flexural vibrations and thermal stability behaviors of functionally graded spherical caps are investigated employing a three-noded axisymmetric curved shell element based on field consistency approach. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. The effective material properties are evaluated using homogenization method. A detailed numerical study is carried out to bring out the effects of shell geometries, power law index of functionally graded material and base radius-to-thickness on the vibrations and buckling characteristics of spherical shells.

A Stable Composite Controller Design for Flexible Joint Robot Manipulators (탄성관절을 갖는 로봇 매니퓰레이터의 안정한 합성제어기 설계)

  • 이만형;백운보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.385-392
    • /
    • 1993
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate an additional stabilizing control law with the sliding property. The singularly perturbated models in this paper include inertia moments which are functions or the deformations of actuators as well as link positions. The values of renewedly defined fast controller variables are computer from the corrected reduced-order model without additional computational loads. Proposed schemes are compared with the conventional one. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than the conventional scheme, and especially effective for the manipulator with high joint-flexibilities.