DOI QR코드

DOI QR Code

Vibrations and thermal stability of functionally graded spherical caps

  • Prakash, T. (Department of Applied Mechanics, Indian Institute of Technology Delhi) ;
  • Singh, M.K. (Department of Applied Mechanics, Indian Institute of Technology Delhi) ;
  • Ganapathi, M. (Institute of Armament Technology)
  • Received : 2005.12.13
  • Accepted : 2006.06.01
  • Published : 2006.11.10

Abstract

Here, the axisymmetric free flexural vibrations and thermal stability behaviors of functionally graded spherical caps are investigated employing a three-noded axisymmetric curved shell element based on field consistency approach. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. The effective material properties are evaluated using homogenization method. A detailed numerical study is carried out to bring out the effects of shell geometries, power law index of functionally graded material and base radius-to-thickness on the vibrations and buckling characteristics of spherical shells.

Keywords

References

  1. Benveniste, Y. (1987), 'A new approach to the application of Mori-Tanaka's theory in composite materials', Mech. Mater., 6, 147-157 https://doi.org/10.1016/0167-6636(87)90005-6
  2. Cheng, Z.-Q. and Batra, R.C. (2000), 'Three-dimensional thermoelastic deformations of a functionally graded elliptic plate', Composites Part B : Engineering, 31, 97-106 https://doi.org/10.1016/S1359-8368(99)00069-4
  3. Dao, M., Gu, P., Maeqal, A. and Asaro, R. (1997), 'A micro mechanical study of a residual stress in functionally graded materials', Acta Materialia, 45, 3265-3276 https://doi.org/10.1016/S1359-6454(96)00405-3
  4. Durodola, J.F. and Adlington, J.E. (1996), 'Functionally graded material properties for disks and rotors', Proc. 1st Int. Conf. on Ceramic and Metal Matrix Composites, San Sebastian, Spain
  5. Fukui, Y. (1991), 'Fundamental investigation of functionally gradient material manufacturing system using centrifugal force', JSME Int. J Series III, 34, 144-148
  6. Ganapathi, M., Gupta, S.S. and Patel, B.P. (2003), 'Nonlinear axisymmetric dynamic buckling of laminated angle-ply composite spherical caps', Compos. Struct., 59, 89-97 https://doi.org/10.1016/S0263-8223(02)00227-1
  7. Hatta, H. and Taya, M. (1985), 'Effective thermal conductivity of a misoriented short fiber composite', J. Appl. Phy., 58, 2478-2486 https://doi.org/10.1063/1.335924
  8. He, XQ., Ng, T.Y., Sivashanker, S. and Liew, KM. (2001), 'Active control of FGM plates with integrated piezoelectric sensors and actuators', Int. J. Solids Struct., 38, 1641-1655 https://doi.org/10.1016/S0020-7683(00)00050-0
  9. Kadoli, R. and Ganesan, N. (2005), 'A theoretical analysis of linear thermoelastic buckling of composite hemispherical shells with a cut-out at the apex', Compos. Struct., 68, 87-101 https://doi.org/10.1016/j.compstruct.2004.03.003
  10. Koizumi, M. (1993), 'The concept of FGM', Ceramic Transactions Functionally Graded Material, 34, 3-10
  11. Koizumi, M. (1997), 'FGM activities in Japan', Composites Part B: Engineering, 28, 1-4 https://doi.org/10.1016/S1359-8368(96)00016-9
  12. Kraus, H. (1967), Thin Elastic Shells, New York, John Wiley
  13. Lanhe, Wu (2004), 'Thermal buckling of a simply supported moderately thick rectangular FGM plate', Compos. Struct., 64, 211-218 https://doi.org/10.1016/j.compstruct.2003.08.004
  14. Li, C., Weng, Z. and Duan, Z. (2001), 'Dynamic behavior of a cylindrical crack in a functionally graded interlayer under torsional loading', Int. J. Solids Struct., 38, 7473-7485 https://doi.org/10.1016/S0020-7683(01)00046-4
  15. Li, C., Weng, Z. and Duan, Z. (2001), 'Dynamic stress intensity factor of a functionally graded material with a finite crack under anti-plane shear loading', Acta Mechanica., 149, 1-10 https://doi.org/10.1007/BF01261659
  16. Loy, CT., Lam, KY. and Reddy, J.N. (1999), 'Vibration of functionally graded cylindrical shells', Int. J. Mech. Sci., 41, 309-324 https://doi.org/10.1016/S0020-7403(98)00054-X
  17. Ma, L.S. and Wang, T.J. (2003), 'Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings', Int. J. Solids Struct., 40, 3311-3330 https://doi.org/10.1016/S0020-7683(03)00118-5
  18. Makino, A., Araki, N., Kitajima, H. and Ohashi, K (1994), 'Transient temperature response of functionally gradient material subjected to partial, stepwise heating', Trans. JSME, Part B, 60, 4200-4206 https://doi.org/10.1299/kikaib.60.4200
  19. Mori, T and Tanaka, K (1973), 'Average stress in matrix and average elastic energy of materials with misfitting inclusions', Acta Metallurgica, 21, 571-574 https://doi.org/10.1016/0001-6160(73)90064-3
  20. Ng, TY., He, X.Q. and Liew, KM. (2002), 'Finite element modeling of active control of functionally graded shells in frequency domain via piezoelectric sensors and actuators', Comput. Mech., 28, 1-9 https://doi.org/10.1007/s004660100264
  21. Ng, TY., Lam, K.Y. and Liew, KM. (2000), 'Effects of FGM materials on the parametric resonance of plate structures', Comput. Meth. Appl. Mech. Eng., 190,953-962 https://doi.org/10.1016/S0045-7825(99)00455-7
  22. Ng, TY., Lam, K.Y., Liew, KM. and Reddy, N.J. (2001), 'Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading', Int. J. Solids Struct., 38, 1295-1309 https://doi.org/10.1016/S0020-7683(00)00090-1
  23. Obata, Y. and Noda, N. (1994), 'Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material', J. Thermal Stresses, 17, 471-487 https://doi.org/10.1080/01495739408946273
  24. Oh, Sang-Yong, Librescu, Liviu and Song, Ohseop (2003), 'Thin-walled rotating blades made of functionally graded materials: Modelling and vibration analysis', AIAA-2003-1541 44th AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics and Materials Conference, Norfolk, Virginia
  25. Prathap, G and Ramesh Babu, C. (1986), 'A field-consistent three-noded quadratic curved axisymmetric shell element', Int. J. Numer. Meth. Eng., 23, 711-723 https://doi.org/10.1002/nme.1620230413
  26. Praveen, GN. and Reddy, IN. (1998), 'Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates', Int. J. Solids Struct., 35, 4457-4476 https://doi.org/10.1016/S0020-7683(97)00253-9
  27. Qian, L.E, Batra, R.C. and Chen, L.M. (2004), 'Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local PetrovGalerkin method', Composites Part B: Engineering, 35, 685-697 https://doi.org/10.1016/j.compositesb.2004.02.004
  28. Rosen, B.w. and Hashin, Z. (1970), 'Effective thermal expansion coefficients and specific heats of composite materials', Int. J Eng. Sci., 8, 157-173 https://doi.org/10.1016/0020-7225(70)90066-2
  29. Sathyamoorthy, M. (1994), 'Vibrations of moderately thick shallow spherical shells at large amplitudes', J. Sound Vib., 172, 63-70 https://doi.org/10.1006/jsvi.1994.1158
  30. Suresh, S. and Mortensen, A. (1998), 'Fundamentals of functionally graded materials', Institute of Materials, London
  31. Takezono, S., Tao, K, lnamura, E. and Inoue, M. (1994), 'Thermal stress and deformation in functionally graded material shells of revolution under thermal loading due to fluid', JSME Int. Series A: Mechanics and Material Engineering, 39, 573-581
  32. Tauchert, T.R. (1991), 'Thermally induced flexure, buckling and vibration of plates', Appl. Mech. Rev., 44, 347-360 https://doi.org/10.1115/1.3119508
  33. Vel, S.S. and Batra, R.C. (2004), 'Three-dimensional exact solution for the vibration of functionally graded rectangular plates', J Sound Vib., 272, 703-730 https://doi.org/10.1016/S0022-460X(03)00412-7
  34. Weisenbek, E., Pettermann, RE. and Suresh, S. (1997), 'Elasto-plastic deformation of compositionally graded metal-ceramic composites', Acta Materialia, 45,3401-3417 https://doi.org/10.1016/S1359-6454(96)00403-X
  35. Wetherhold, R.c., Seelman, S. and Wang, J.Z. (1996), 'The use of functionally graded materials to eliminate or control thermal deformation', Comp. Sci. Tech., 56, 1099-1104 https://doi.org/10.1016/0266-3538(96)00075-9
  36. Yamaoka, H., Yuki, M., Tahara, K., Irisawa, T., Watanabe, R. and Kawasaki, A. (1993), 'Fabrication of functionally gradient material by slurry stacking and sintering process', Ceramic Transactions Functionally Gradient Material, 34, 165-172
  37. Yang, J., Kitipomchai, S. and Liew, K.M. (2003), 'Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates', Comput. Meth. Appl. Mech. Eng., 192,3861-3885 https://doi.org/10.1016/S0045-7825(03)00387-6
  38. Zhang, c., Savaids, A., Savaids, G and Zhu, H. (2003), 'Transient dynamic analysis of a cracked functionally graded material by BIEM', Comput. Mater. Sci., 26, 167-174 https://doi.org/10.1016/S0927-0256(02)00395-6
  39. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, McGraw-Hill, Singapore

Cited by

  1. Thermal post-buckling analysis of uniform slender functionally graded material beams vol.36, pp.5, 2006, https://doi.org/10.12989/sem.2010.36.5.545
  2. Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature vol.12, pp.2, 2006, https://doi.org/10.12989/scs.2012.12.2.129
  3. Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams vol.44, pp.3, 2006, https://doi.org/10.12989/sem.2012.44.3.339