In this paper, we study the fixed charge transportation problem with uncertain variables. The fixed charge transportation problem has two kinds of costs: direct cost and fixed charge. The direct cost is the cost associated with each source-destination pair, and the fixed charge occurs when the transportation activity takes place in the corresponding source-destination pair. The uncertain fixed charge transportation problem is modeled on the basis of uncertainty theory. According to inverse uncertainty distribution, the model can be transformed into a deterministic form. Finally, in order to solve the uncertain fixed charge transportation problem, a numerical example is given to show the application of the model and algorithm.
The transportation problem (TP) is known as one of the important problems in Industrial Engineering and Operational Research (IE/OR) and computer science. When the problem is associated with additional fixed cost for establishing the facilities or fulfilling the demand of customers, then it is called fixed charge transportation problem (fcTP). This problem is one of NP-hard problems which is difficult to solve it by traditional methods. This paper aims to show the application of spanning-tree based Genetic Algorithm (GA)approach for solving nonlinear fixed charge transportation problem. Our new idea lies on the GA representation that includes the feasibility criteria and repairing procedure for the chromosome. Several numerical experimental results are presented to show the effectiveness of the proposed method.
Journal of Korean Institute of Industrial Engineers
/
v.31
no.1
/
pp.79-86
/
2005
The transportation problem (TP) is one of the traditional optimization problems. Unlike the TP, the fixed charge transportation problem (FCTP) cannot be solved using polynomial time algorithms. So, finding solutions for the FCTP is a well-known NP-complete problem involving an importance in a transportation network design. So, it seems to be natural to use evolutionary algorithms for solving FCTP. And many evolutionary algorithms have tackled this problem and shown good performance. This paper introduces an efficient evolutionary algorithm for the FCTP. The proposed algorithm can always generate feasible solutions without any repair process using the random key representation. Especially, it can guide the search toward the basic solution. Finally, we performed comparisons with the previous results known on the benchmark instances and could confirm the superiority of the proposed algorithm.
Journal of the Korean Operations Research and Management Science Society
/
v.41
no.4
/
pp.113-128
/
2016
This paper proposes a Bi-level Genetic Algorithm for the Fixed Charge Transportation Problem with Non-linear Unit Cost. The problem has the property of mixed integer program with non-linear objective function and linear constraints. The bi-level procedure consists of the upper-GA and the lower-GA. While the upper-GA optimize the connectivity between each supply and demand pair, the lower-GA optimize the amount of transportation between the pairs set to be connected by the upper-GA. In the upper-GA, the feasibility of the connectivity are verified, and if a connectivity is not feasible, it is modified so as to be feasible. In the lower-GA, a simple method is used to obtain a pivot feasible solution under the restriction of the connectivity determined by the upper-GA. The obtained pivot feasible solution is utilized to generate the initial generation of chromosomes. The computational experiment is performed on the selected problems with several non-linear objective functions. The performance of the proposed procedure is analyzed with the result of experiment.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.05a
/
pp.793-796
/
2008
본 논문은 생산 물류 시스템최적화의 실현에 가장 대표적인 생산수송계획문제인 수송문제(TP: Transportation Problem)에 고정비용을 고려한 고정비용 수송문제(fcTP: Fixed charge Transportation Problem)를 다룬다. 특히 NP-hard문제로 널리 알려진 TP에서 수송량에 비례하는 가변비용과 함께 추가적으로 모든 경로에서 발생하는 고정비용을 함께 고려한 fcTP를 다룬다. 따라서 이러한 fcTP를 해결하기 위해 메타 휴리스틱기법 중에 가장 널리 이용되고 있는 유전 알고리즘(CA: Genetic Algorithm)을 이용한 해법을 제시하고자 한다. 본 논문에서는 CA를 이용해 고정비용 수송문제의 해를 우선순위기반 유전자 표현법을 이용해 fcTP에 적용해 보고 수치 실험을 통해 그 성능에 대한 연구를 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.195-204
/
2003
Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.10a
/
pp.969-972
/
2007
수송문제는 산업공학 및 전자계산학 분야에서 중요한 문제 중의 하나로 인식된다. 수송문제가 시설을 수립하거나 고객들의 요구를 이행하기 위한 추가적인 고정 비용과 연관될 때, 이를 고정비용을 고려한 비선형 수송문제(Fixed Charge Non-linear Transportation Problem)라 한다. 고정비용을 고려한 비선형 수송문제는 한 종류의 상품을 다수의 공급처에서 다수의 수급처로 수송할 때, 수송비용과 고정비용이 최소가 되도록 수송량을 결정하는 문제이다. 본 논문에서는 이 비선형 수송문제에 가장 많이 쓰이는 메타 휴리스틱 방법들 중 유전 알고리즘을 이용한 해법을 제시한다. 유전 알고리즘을 적용함에 있어서 가장 중요한 것 중에 하나는 해의 유전자표현을 어떻게 나타낼 것인가 인데, 본 논문에서는 수송문제의 해를 걸침나무로 표현할 수 있다는 점에 착안하여 유전자 표현법들을 수송문제에 적용해 보고 수치 실험을 통해 그 성능에 대한 비교를 한다.
Kim, Byung-Ki;Jang, Ji-Hoon;Kim, Jong-Ryul;Jo, Jung-Bok
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.371-374
/
2007
본 논문에서는 고정 비용을 고려한 비선형 수송문제(Fixed Charge Non-linear Transportation Problem)에 대해 다룬다. 이는 한 종류의 상품을 다수의 공급처에서 다수의 수급처로 수송할 때, 총 수송비용과 고정 비용이 최소가 되도록 각 공급처와 수급처 간의 수송량을 결정하는 문제이다. 현재 비선형 수송문제에 대한 다양한 해법들이 제안되고 있으며 그 중에서도 메타 휴리스틱을 이용한 해법들이 가장 활발히 연구되고 있다. 본 논문에서는 메타 휴리스틱 방법들중에 가장 널리 이용되고 있는 유전 알고리즘을 이용한 해법을 제시하고자 한다. 유전 알고리즘을 적용함에 있어서 제일 첫 관문은 해의 유전자표현을 어떻게 나타낼 것인가이다. 본 논문에서는 수송문제의 해를 걸침나무로 표현할 수 있다는 점 에 착안하여 다양한 트리 표현법을 수송문제에 적용해 보고 수치 실험을 통해 그 성능에 대한 비교 연구를 한다.
Journal of the Korean Operations Research and Management Science Society
/
v.32
no.2
/
pp.109-121
/
2007
This paper focuses on algorithms based on the evolution, which is applied to various optimization problems. Especially, among these algorithms based on the evolution, we investigate the simple genetic algorithm based on Darwin's evolution, the Lamarckian algorithm based on Lamark's evolution and the Baldwin algorithm based on the Baldwin effect and also Investigate the difference among them in the biological and engineering aspects. Finally, through this comparison, we suggest a new algorithm to find more various solutions changing the genotype or phenotype search space and show the performance of the proposed method. Conclusively, the proposed method showed superior performance to the previous method which was applied to the constrained minimum spanning tree problem and known as the best algorithm.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
v.2
/
pp.121-124
/
2006
본 논문에서는 고정비용수송문제와 같은 다양한 네트워크 최적화 문제들에 적용될 수 있는 새로운 진화 알고리즘을 소개한다. 제안하는 알고리즘은 기존의 진화 알고리즘과 비교에서 두가지 다른 특징을 지닌다. 첫째, 해 표현법이 다르다. 초기에, 모든 유전인자 값이 '0'으로 설정된다. 둘째, 각 해들은 일치하는 적합도 값에 따라 일종의 라마크식(Lamarckian) 적응 과정을 수행한다. 제안하는 적응적 진화 알고리즘의 성능을 측정하기 위해 고정비용수송문제에 적용하였으며 또한 동시에 제안하는 알고리즘을 최적화하기 위해 다양한 실험을 수행하였다. 결론적으로, 제안하는 알고리즘은 기존에 고정비용수송문제를 위해 제안된 가장 우수한 알고리즘보다 더 우수한 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.