References
- Adlakha, V. and Kowalski, K.(1999), Onthe fixed-charge transportation problem, The International Journal of Management Science, 27,381-388
- Adlakha, V. and Kowalski, K.(2003), A simple heuristic for solving small fixed-charge transportation problems. The International Journal of Management Science, 31,205-211
- Back, T., Fogel, D.B. and Michalewicz, Z.(1997), Handbook of Evolutionary Computation, Oxford University Press
- Barr, R.S., Glover, R.S., and Klingman, D.(1981), A new optimization method for large scale fixed charge transportation problems, Operations Research, 29(3), 448-463 https://doi.org/10.1287/opre.29.3.448
- Bean, J.(1994), Genetic Algorithms and Random Keys forSequencing and Optimization, ORSA Journal on Computing, 6(2),154-160 https://doi.org/10.1287/ijoc.6.2.154
- Eckert, C. andGottlieb, 1.(2002), Direct Representation and Variation Operators for the Fixed Charge Transportation Problem, In Proc. of PPSN VII, 77-87
- Gen, M., Ida,K. and Li, Y.(1998), Bicriteria Transportation Problem by Hybrid Genetic Algorithm, Computers and Industrial Engineering, 35(1-2), 363-366 https://doi.org/10.1016/S0360-8352(98)00095-3
- Gen, M. and Li, Y.(1999), Spanning Tree-based Genetic Algorithm for the Bicriteria Fixed Charge Transportation Problem, Congress on Evolutionary Computationion
- Gottlieb, J. and Paulmann, L.(1998), Genetic algorithms for the fixed charge transportation problem, In Proc. of 5th IEEE International Conference on Evolutionary Computation, 330-335
- Gottlieb, J. and Eckert, C.(2000), A comparison of two representations for the fixed charge transportation problem, In Proc. of PPSN VI, 345-354
- Guisewite, G.M. and Pardalos, P.M.(1990), Minimum concave-cost network flow problems: Applications, complexity, andalgorithms. Annals of Operations Research, 25, 75-100 https://doi.org/10.1007/BF02283688
- Kennington, J.L. and Unger, V.E.(1976), A new branch and bound algorithm for the fixed charge transportation problem, Management Science, 22(10),1116-1126 https://doi.org/10.1287/mnsc.22.10.1116
- Michalewics, Z., Vignaux, G. A. and Hobbs, M.(1991), A Nonstandard Genetic Algorithm for theNonlinear Transportation Problem, ORSA Journal on Computing, 3(4),307-316 https://doi.org/10.1287/ijoc.3.4.307
- Muhlenbein, H. and Schlierkamp-Voosen, D.(1993), Predictive models for the breeder genetic algorithm: Continuous parameter optimization, Evolutionary Computation, 1(1),25-49 https://doi.org/10.1162/evco.1993.1.1.25
- Palekar, U.S.(1986), Approaches for solving the Fixed Charge Transportation Problem. PhD thesis, State University of New York, Buffalo
- Rothlauf, F., Goldberg, D. and Heinzl, A.(2002), Network Random Keys - A Tree Network Representation Scheme for Genetic and Evolutionary Algorithms, Evolutionarv Computation, 10(1), 75-97 https://doi.org/10.1162/106365602317301781
- Soak, S.M. and Ahn, B.H.(2004), A New tree representation for Evolutionary Algorithms, accepted, Journal of the Korean Institute of Industrial Engineers
- Soak, S.M., Come, D. and Ahn, B.H.(2004), ANew Encoding for the Degree Constrained Minimum Spanning Tree Problem, Lecture Note onArtificial Intelligence, 3213, 952-958
- Sun, M., Aronson, J.E., McKeown, P.G. and Drinka, D.(1998), A tabu search heuristic procedure for the fixed charge transportation problem, European Journal of Operational Research, 106, 441-456 https://doi.org/10.1016/S0377-2217(97)00284-1
- Vignaux, G.A. and Michalewicz, Z.(1991), A Genetic Algorithm for the Linear Transportation Problem, IEEE Transaction on Systems, Man, and Cybernetics, 21(2), 445-452 https://doi.org/10.1109/21.87092
- Zhang, B.T. and Kim, J.J(2000), Comparison of Selection Methods for Evolutionary Optimization, Evolutionary Optimization, An International Journal on the lnternet, 2(1),55-70
- http://www.in.tu-clausthal.de/~gottlieb/benchmarks/fctp/