An Adaptive Evolutionary Algorithm Applied to the Fixed Charge Transportation Problem

Sang-Moon Soak* · Hong-Girl Lee**
*Information Systems Examination Team, Korean Intellectual Property Office, Daejeon, Republic of Korea
**Division of e-Business, Kyungnam University, Masan, Republic of Korea

Contents
I. Introduction
II. The fixed charge transportation problem
III. Adaptive Link Adjustment Evolutionary Algorithm (ALA-EA)
 I. ALA-EA algorithm
 II. ALA-EA algorithm design
IV. Experimental Results
V. Conclusion

* 대표저자: 식성문(정회원) soakbong@hotmail.com
** 정회원 hglee@kyungnam.ac.kr
2. Background(1)

Fixed Charge Transportation Problem

Problem Definition: FCSP

\[\text{Minimize } Z = \sum_{i \in I} \sum_{j \in J} c_{ij}x_{ij} + \sum_{k \in K} (b_kx_k) \]

subject to

\[\sum_{j \in J} x_{ij} = a_i \quad \text{for } i \in I \]
\[\sum_{i \in I} x_{ij} = b_j \quad \text{for } j \in J \]
\[x_{ij} \geq 0 \quad \text{for all } (i, j) \]
\[x_{ij} \geq 0 \quad \text{for all } (i, j) \]

Without loss of generality, we assume that

\[\sum_{i \in I} x_{ij} = \sum_{j \in J} x_{ij} = 0 \]

2. Background(2)

General Genetic Algorithm

Initiation \[\rightarrow \] Evaluation \[\rightarrow \] Selection \[\rightarrow \] Crossover \[\rightarrow \] Mutation

2. Background(3)

Algorithms based on Evolution

Search Spaces

Gamete Search Space \[\rightarrow \] Phenotype Search Space \[\rightarrow \] Fitness Search Space

3. Background(4)

The evidence that learning can help the evolution

4. Background(5)

Algorithms based on Evolution

<table>
<thead>
<tr>
<th>Algorithms based on Evolution</th>
<th>Darwinian Algorithm</th>
<th>Lamarckian Algorithm</th>
<th>Baldwinian Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwinian Adaptation</td>
<td>Selection</td>
<td>Individual</td>
<td>Genetic theory</td>
</tr>
<tr>
<td>Lamarckian Adaptation</td>
<td>创新发展</td>
<td>♆</td>
<td>创新发展</td>
</tr>
<tr>
<td>Baldwinian Adaptation</td>
<td>创新发展</td>
<td>♆</td>
<td>创新发展</td>
</tr>
</tbody>
</table>

3. Adaptive Link Adjustment EA (ALA)

Main Idea
- We don't need to find the same solution again.
 - Adaptive Link Adjustment using Lamarckian Adaptation.

The differences between EA and ALA

1. All gene values are initialized \(\theta \) value
2. Incorporating a learning process for adaptation into evaluation process
3. Gene values indicates a frequency that a gene appears in a good solution.
5. Experimental Results

Table 5. Experimental Results on FC1P Instances

<table>
<thead>
<tr>
<th>Instance</th>
<th>clique</th>
<th>Max Max</th>
<th>Max Min</th>
<th>Avg Max</th>
<th>Avg Min</th>
<th>Avg</th>
<th>Max</th>
<th>Min</th>
<th>Std</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>m30-t1</td>
<td>6.87</td>
<td>2.59</td>
</tr>
<tr>
<td>m30-t2</td>
<td>6.87</td>
<td>2.59</td>
</tr>
<tr>
<td>m30-t3</td>
<td>6.87</td>
<td>2.59</td>
</tr>
</tbody>
</table>

Figure 5. Results tested on various θ values

Table 6. Degree of Improvement of the optimized ALA vs. the previous algorithm.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Max Max</th>
<th>Max Min</th>
<th>Avg Max</th>
<th>Avg Min</th>
<th>Avg</th>
<th>Max</th>
<th>Min</th>
<th>Std</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>m30-t1</td>
<td>6.87</td>
<td>2.59</td>
</tr>
<tr>
<td>m30-t2</td>
<td>6.87</td>
<td>2.59</td>
</tr>
<tr>
<td>m30-t3</td>
<td>6.87</td>
<td>2.59</td>
</tr>
</tbody>
</table>

Figure 6. Experimental results in case using different n and θ, and result comparison with the variation of the ALO/αLON algorithm.
6. Conclusion and Future Works

Summary
- Introduce a new evolutionary algorithm applied to FCTP.
- ALA is incorporating a dynamic learning process.
- ALA finds the best solution on the previous benchmark instances.
- ALA can be a very useful method for optimization problems in logistics.

Conclusion
- ALA can be the best in FCTP or alternative method for network optimization problems.

Future Works