• Title/Summary/Keyword: Test compression

Search Result 2,697, Processing Time 0.027 seconds

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

Strength Evaluation of the Plant Facility for Fluid Machinery Using Schmidt Hammer in Cold Regions (극한지에서의 유체기계를 위한 플랜트 설비구조물의 비파괴 건전도 평가)

  • Hong, Seung-Seo;Kim, YoungSeok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.25-28
    • /
    • 2016
  • The Schmidt hammer test is one of the best nondestructive tests to measure the strength without breaking structures, which has been used to measure the strength of concrete structures in a simple way at construction sites. However, the future research is needed to apply Schmidt hammer in cold regions. This study is intended to investigate the correlation between unconfined compression test result of the oil storage facilities foundation taken at the King Sejong Antarctic Station and Schmidt hammer test result at the sample-taking site. Also, the equation for uniaxial compression strength using Schmidt hammer rebound value is proposed.

The Compressive Strength and Durability Characteristics of Lime-Cement-Soil Mixtures (석회-시멘트 혼합토의 압축강도 및 내구 특성)

  • Oh, Sang-Eun;Yeon, Kyu-Seok;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • In this study, the compressive strength characteristics of lime-cement-soil mixtures, composed of lime, soil, and a small amount of cement, were investigated by performing the unconfined compression tests, the freezing and thawing tests, the wetting and drying tests and the permeability tests. The specimens were made by mixing soils with cement and lime. The cement contents were 0, 6, 8 and 10 %, and the lime contents were 2, 4, 5, 10, 15 and 20 % in weight. Each specimen was cured at constant temperature in a humidity room for 3, 7 and 28 days. The compressive strength characteristics of the lime-cement-soil mixtures were then investigated using the unconfined compression tests, freezing and thawing tests and the wetting and drying tests. Based on the test results, a discussion was made on the applicability of the lime-cement-soil mixtures as a construction material.

The Deformation-Strength Characteristic for Gravel Material(1) - Development for Large Triaxial Test Device - (조립재료의 변형-강도특성에 대하여(I) - 대형삼축시험장치의 개발 -)

  • 신동훈;오병현;박한규;박성진;황성춘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.311-318
    • /
    • 2000
  • In constructions of dams and ports structure, gravels are used as principle structural materials. Gravels have different material property compared with other materials like soil and concretes, etc. For example, material properties of gravels obtained from normal triaxial compression test are usually overestimated due to scale and penetration effects. Also, material properties of gravels under dynamic loads are the main interest when structural behavior of rockfill dam under earthquake loads is analyzed. The development of large triaxial compression apparatus is needed for the better estimation of material property of gravel. This paper reports work in progress to development of large triaxial compression apparatus.

  • PDF

Sensitivity of Dimensional Changes to Interfacial Friction over the Definite Range of Friction Factor in Ring Compression Test (링 압축시험에서 마찰인자 구간별 치수 변화의 민감도)

  • Lim, J.Y.;Noh, J.H.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.494-501
    • /
    • 2010
  • The main objective of this study is to examine the sensitivity of calibration curves of FEA of ring compression test to frictional shear factor. Ring compression test has been investigated by measuring dimensional changes at different positions of ring specimen and they include the changes in internal diameter at the middle and top section of the specimen, outer diameter at the middle and top section, surface expansion at the top surface, respectively. Initial ring geometries employed in analysis maintain a fixed ratio of 6 : 3 : 2, i.e. outer diameter : inner diameter : thickness of the ring specimen, which is generally known as 'standard' specimen. A rigid plastic material for different work-hardening characteristics has been modeled for simulations using rigid-plastic finite element code. Analyses have been performed within a definite range of friction as well as over whole range of friction to show different sensitivities to the interfacial friction for different ranges of friction. The results of investigation in this study have been summarized in terms of a dimensionless gradient. It has been known from the results that the dimensional changes at different positions of ring specimen show different linearity and sensitivity to the frictional condition on the contact surface.

A study on selection and size of Earth in application of Rammed Earth (흙다짐 적용을 위한 흙의 선정 및 입도조건에 관한 연구)

  • Hwang, Hey Zoo;Kim, Tae Hun;Yang, Jun Hyuk
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.65-71
    • /
    • 2009
  • Results from tests for what mixing rate of soil and sand is proper for the rammed earth and for how much additives are optimum are as under. 1) In the test to evaluate what mixing rate of soil and sand is desirable, peptizing property and surface sticking rate are found similar in its degree, but compression strength is found most stable when the ratio of soil and sand mixing shows 30:70 which indicates the best mixing rate of soil and sand. 2) In a test to add hydrated lime, compression strength, peptizing property, and surface sticking rate are found best when the mixing rate of soil and sand shows 23:7. 3) In a test to add sea weeds, the peptizing property goes down at 75% of sea weeds input a little bit more than at 100%, but compression strength shows best at 75% which is thought to be the best rate. 4) In a drop test, more soil powder mixed, the sticking strength gets better and more sands are contained, the sticking strength gets far worse to be scattered in powder type. 5) As concluding all results mentioned in the above item, the most desirable mixing rate of soil, sand, and hydrated lime is found to be 23:7:70 for the rammed earth where compression strength, peptizing property, and surface sticking rate are best.

A Study on the Disturbance Effects with Sampling Methods of Soft Clay (연약 점성토의 시료채취방법에 따른 시료교란도의 영향에 관한 연구)

  • 박춘식;장정욱;김종환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.577-584
    • /
    • 2002
  • We have employed two methods to remove slime at the end of the sampler in clay layers. The first method is a sampling process that harnesses low pressure to clean up the ground around the sampler tip. The second method, in consideration of a disturbed layer, involves a technique of inserting the sampler 50 cm deep into the ground before cleaning up the verge of the sampler by using high pressure. Physical and mechanical properties of these two methods have been compared and analyzed to investigate how different sampling methods affect degree of disturbance. The first method shows little disturbance since the unconfined compression test results in quite greater E$\_$50//q$\_$u/ in the first method than in the second method. On the other hand, the consolidation test results in a slightly greater compression index in the second method than in the first method, when their indexes are compared in the same depth. This suggests that the second method demonstrates less disturbance than the first method does. It is assumed that the second method may reduce disturbance slightly, However, we suspect that choosing any of the two methods would not obtain a considerable difference in sampling.

  • PDF

The Effect of Cardiopulmonary Resuscitation Education for Kindergarten Students

  • Kim, Jae-Ik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.157-162
    • /
    • 2020
  • In this paper, we propose an analyze the effects of CPR education for kindergarten students, to determine their role as first responders, and to use them as basic data for the development and activation of CPR education programs for future kindergarten students. Five CPR training sessions were repeated for 10 weeks for children aged 6 and 7 years in kindergarten in J city, and objective data was collected using feedback equipment. The data were analyzed by t-test and paired t-test using SPSS 23.0 for win statistics program. The results showed that chest compression depth, chest compression velocity, and chest compression hand position increased significantly after repeated training. In conclusion, the cardiopulmonary resuscitation training for kindergarten students was effective, and the kindergarten students could play the role of first responders.

A study on stress-strain relation measurement for micro scale UV-curable polymer structure (UV-경화 폴리머 마이크로 구조물의 응력-변형률 관계 측정에 관한 연구)

  • Jeong S.J.;Kim J.H.;Lee H.J.;Park S.H.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.492-497
    • /
    • 2005
  • In this study, we propose an advanced nanoindentaion test, Nano Pillar Compression Test (NPCT) to measure a stress-strain relation for micro scale polymer structures. Firstly, FEM analysis is performed to research behavior of micro polymer pillars in several specimen aspect ratios and different friction conditions between specimen and tip. Based on the FEM results, micro scale UV-curable polymer pillars are fabricated on a substrate by Nano Stereo Lithography (NSL). To measure their mechanical properties, uniaxial compression test is performed using nanoindentation apparatus with flat-ended diamond tip. In addition, the dependency of compression properties on loading condition and specimen size are discussed.

  • PDF

SMC: An Seed Merging Compression for Test Data (시드 병합을 통한 테스트 데이터의 압축방법)

  • Lee Min-joo;Jun Sung-hun;Kim Yong-joon;Kang Sumg-ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.41-50
    • /
    • 2005
  • As the size of circuits becomes larger, the test method needs more test data volume and larger test application time. In order to reduce test data volume and test application time, a new test data compression/decompression method is proposed. The proposed method is based on an XOR network uses don't-care-bits to improve compression ratio during seed vectors generation. After seed vectors are produced seed vectors can be merged using two prefix codes. It only requires 1 clock time for reusing merged seed vectors, so test application time can be reduced tremendously. Experimental results on large ISCAS '89 benchmark circuits prove the efficiency of the proposed method.