• Title/Summary/Keyword: Tension members

Search Result 312, Processing Time 0.029 seconds

Flexural ductility of HSC members

  • Maghsoudi, A.A.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.195-212
    • /
    • 2006
  • In seismic areas, ductility is an important factor in design of high strength concrete (HSC) members under flexure. A number of twelve HSC beams with different percentage of ${\rho}$ & ${\rho}^{\prime}$ were cast and incrementally loaded under bending. The effect of ${\rho}^{\prime}$ on ductility of members were investigated both qualitatively and quantitatively. During the test, the strain on the concrete middle faces, on the tension and compression bars, and also the deflection at different points of the span length were measured up to failure. Based on the obtained results, the serviceability and ultimate behavior, and especially the ductility of the HSC members are more deeply reviewed. Also a comparison between theoretical and experimental results are reported here.

Nonlinear Analysis of High Strength Reinforced Concrete Members Considering the Tension Stiffening Model (인장강성 모델을 고려한 고강도 철근콘크리트 부재의 비선형 해석)

  • 홍창우;윤경구;김경진;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.479-482
    • /
    • 1999
  • The tension stiffening effect, which means the maintaining a part of stiffness after cracking of concrete in tensile, exists at a reinforced concrete member because of the concrete softening and bonding stress between cracks. It is required to consider it for precise analysis and evaluation o structural behavior, due to the possibility of discrepancy between the actual behavior and the analysis without considering the tension stiffening effect. Making and adopting a tension stiffening model is the most simple and effective way for considering it at nonlinear analysis which indicated the estimation from models and experimental results were similar each others. The comparisons on RC beam were, also performed in order to analyzed the influence of concrete strength and steel ratio into the structural behavior. They indicated that the results from analysis estimated quite closely to the test results at low steel ratio, however, overestimated at high steel ratio. The overestimation increase linearly as concrete strength or steel ratio increased.

  • PDF

Dynamic Response Characteristics of Tension Leg Platforms in Waves (인장계류식 해양구조물의 동적응답 특성)

  • Lee, C.H.;Son, Y.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 1998
  • The dynamic response characteristics of Tension Leg Platforms(TLPs) in waves are examined for presenting the basic data for design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. Numerical results are compared with the experimental ones, which are obtained in the literature, concerning the motion and tension responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Computing the Refined Compression Field Theory

  • Hernandez-Diaz, A.M.;Garcia-Roman, M.D.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.143-147
    • /
    • 2016
  • In recent years, some modifications were introduced in the stress-strain relationship of the steel in order to develop a more efficient shear model for reinforced concrete members. The last contribution in this sense corresponding to the Refined Compression Field Theory (RCFT, 2009); this theory proposed a steel constitutive model that has account the tension stiffening area prescribed by technical codes, what simplifies all the design process. However, under certain design conditions supported by such codes, the RCFT model does not provide a real (non-complex) solution for the steel yield strain when the prescribed tension stiffening area is considered; then the load-strain response cannot be computed. In this technical note, the tension stiffening area is fixed in order to guarantee the application of the embedded steel constitutive model for all the standard design range.

Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function (다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열해석)

  • 곽효경;송종영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.267-274
    • /
    • 2001
  • In this paper, a analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and by reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreements with results from previous analytical studies and experimental data.

  • PDF

Tension Stiffening and Bond Length of Reinforced Concrete Members Subjected to Uniaxial Tension (1축 인장 부재의 인장강성 및 부착길이 효과)

  • 조능호;정원기;강희철;서정문;전영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.873-878
    • /
    • 2000
  • Tension stiffening effects of reinforced concrete member with large diameter bar, mainly used at reactor building of nuclear power plant, are studied by uniaxial structural tests. Bond length and stress of steel bar, size of steel bar, and compressive strength of concrete are evaluated to tension stiffening by uniaxial tests. Problems and solution during the uniaxial test are suggested. The prevent splitting cracks, concrete cover-to-bar diameter ratio $c/d_{b}$ is kept 2.6~2.8. Because the bond length is increased as the size of steel bar, the specimen length of the D35 steel bar is required at least 2.0 m. The specimen length must be decided with bond length as well as concrete cover-to-bar diameter ratio to prevent splitting crack.

Determination of Member Force Ratios for Self-equilibrium State of Multi-Layered Cable Dome Type Structures (다층 케이블 돔형 구조물의 자기평형을 위한 부재력 비율 결정)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.75-82
    • /
    • 2013
  • For each cable component in a cable dome structure, pre-tension is needed for stability of whole the structure. The summation of these pre-tension at each joint should be zero to achieve the self equilibrium structure. The first step in cable dome structure analysis is to find the ratio of pre-tension in each member which can produce a stable and structure on self-equilibrium. In this paper, a new method based on the basic principle of closed force polygon for equilibrium system is proposed for the determination of self-equilibrium mode of cable dome structure. A single layer cable dome and two multi layer type domes have been analyzed. The ratios of cable members are determined by the presented method, and check the validation of the results by numerical calculation.

Application of direct tension force transfer model with modified fixed-angle softened-truss model to finite element analysis of steel fiber-reinforced concrete members subjected to Shear

  • Lee, Deuck Hang;Hwang, Jin-Ha;Ju, Hyunjin;Kim, Kang Su
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.49-70
    • /
    • 2014
  • Steel fiber-reinforced concrete (SFRC) is known as one of the efficient modern composites that can greatly enhance the material performance of cracked concrete in tension. Such improved tensile resistance mechanism at crack interfaces in SFRC members can be heavily influenced by methodologies of treatments of crack direction. While most existing studies have focused on developing the numerical analysis model with the rotating-angle theory, there are only few studies on finite element analysis models with the fixed-angle model approach. According to many existing experimental studies, the direction of principal stress rotated after the formation of initial fixed-cracks, but it was also observed that new cracks with completely different angles relative to the initial crack direction very rarely occurred. Therefore, this study introduced the direct tension force transfer model (DTFTM), in which tensile resistance of the fibers at the crack interface can be easily estimated, to the nonlinear finite element analysis algorithm with the fixed-angle theory, and the proposed model was also verified by comparing the analysis results to the SFRC shear panel test results. The secant modulus method adopted in this study for iterative calculations in nonlinear finite element analysis showed highly stable and fast convergence capability when it was applied to the fixed-angle theory. The deviation angle between the principal stress direction and the fixed-crack direction significantly increased as the tensile stresses in the steel fibers at crack interfaces increased, which implies that the deviation angle is very important in the estimation of the shear behavior of SFRC members.

Microplane Model for RC Planar Members in Tension-Compression (인장-압축상태의 철근콘크리트 면 부재를 위한 미소면 모델)

  • 박홍근;김학준
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.379-388
    • /
    • 2001
  • Existing microplane models for concrete use three-dimensional spherical microplanes in the analysis of two-dimensional planar members as well as three-dimensional members. Also, they do not accurately describe the post-cracking behavior of reinforced concrete in tension-compression. In this study, a new microplane model is developed to overcome the disadvantages of the existing models. Instead of the spherical microplanes, the proposed microplane model uses disk microplanes involving a less number of microplanes and two-dimensional stresses and strains. As the result, the proposed model is more effective in numerical calculations. Also, the concept of the strain boundary is introduced to describe accurately the compressive behavior of reinforced concrete with tensile cracks in tension-compression. The validity of the proposed model is verified by comparison with existing experiments. In this paper, the microplane model and the numerical techniques involved in the finite element analysis are described in detail.

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.