• Title/Summary/Keyword: Temperature stability time

Search Result 875, Processing Time 0.033 seconds

Interpretation on Internal Microclimatic Characteristics and Thermal Environment Stability of the Royal Tombs at Songsanri in Gongju, Korea (공주 송산리 고분군 내부의 미기후 특성 및 온열환경 안정성 해석)

  • Kim, Sung Han;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.99-115
    • /
    • 2019
  • The Royal Tombs at Songsanri is one of the most important historic site for ancient historical study in Korean Peninsula. Since the excavation of the tombs, continuous exposure to the outside environment and the negative effects of the artificial air conditioning system have caused significant threats to the thermal environment stability of the tombs. Unlike the outside temperature that shows significant differences according to seasonal changes, the burial chamber of the tombs had a relatively stable temperature range of 11.4 to $22.2^{\circ}C$ throughout the year, and the standard deviation of temperature was within 3.5. It was revealed that major factors affecting the microclimate of the tombs were inflow of outdoor air, wind direction and speed, and all of them had closely related to airtightness of the tombs. The solar radiation was in inverse proportion to the thickness of burial mounds, and thus Royal Tomb of King Muryeong, which has the thickest burial mound, was least affected by solar radiation. Especially, microclimate of the tombs caused to the highest influence with artificial environmental changes due to access by people, which varied in proportion to the number of accessed people and time of stay. Currently, the inside of the tombs are sealed and always in saturated condition, it is very vulnerable to dew condensation. As a result of analyzing the possibility of condensation in each tomb, all the tomb No. 5, tomb No. 6 and Royal Tomb of King Muryeong had condensation most of the time throughout the year. It is required to make a proper conservation environment for the Royal Tombs at Songsanri.

Thermal Stability of Polypropylene-Based Wood Plastic Composites by The Addition of Ammonium Polyphosphate (폴리인산염 첨가에 의한 폴리프로필렌 기반의 Wood Plastic Composites 열안정성)

  • Chun, Sang-Jin;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.682-690
    • /
    • 2014
  • In order to improve the thermal stability of wood plastic composites (WPC), thermal degradation behavior of WPC in this study was investigated by the addition of wood flour and fire retardant after hybridization of wood flour and ammonium polyphosphate (APP) into polypropylene (PP) matrix. Thermal degradation behavior of all formulations was analyzed with thermogravimetric analyzer under nitrogen environment at heating rate of $10^{\circ}C/min$. As the thermal degradation temperature of wood flour is lower than that of PP, char layer formed by the wood flour decreases the speed of heat transfer to PP. In addition, the char layer increases the 2nd thermal degradation temperature and decreases the 2nd thermal degradation speed. The WPC treated with APP increases the 1st and 2nd degradation temperatures. In the case of WPC with high loading level of wood flour, the 1st thermal degradation temperature and 2nd thermal degradation rate were increased by the addition of APP, and then the amount of remnants at high temperature was increased by the increase of the APP loading level. In the case of WPC treated with APP, the amount of the remnants at high temperature was increased with the increase of wood flour content from 10 wt% to 50 wt%, indicating that char formation of the APP and wood flour occurred at the same time, resulting in high thermal stability effect by the increase of wood flour content.

Analysis of the Spent Fuel Cooling Time for a Deep Geological Disposal (심지층 처분을 일한 사용후핵연료 냉각기간 분석)

  • Lee, Jong-Youl;Cho, Dong-Geun;Choi, Heui-Joo;Choi, Jong-Won;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The purpose of the HLW deep geological disposal is to isolate and to delay the radioactive material release to human beings and the environment for a long time so that the toxicity does not affect to the environment. The main requirements for the HLW repository design is to keep the buffer temperature below $100\;^{\circ}C$ in order to maintain its integrity. So the cooling time of spent fuels discharged from the nuclear power plant is the key consideration factors for efficiency and economic feasibility of the repository. The disposal tunnel/disposal hole spacing, the disposal area and thermal capacity required for the deep geological repository layout which satisfies the temperature requirement of the disposal system is analyzed to set the optimized spent fuels cooling time. To do this, based on the reference disposal concept, thermal stability analyses of the disposal system have been performed and the derived results have been compared by setting the spent fuels cooling time and the disposal tunnel/disposal hole spacing in various ways. From these results, desirable spent fuels cooling time in view of disposal area is derived. The results shows that the time reaching the maximum temperature within the design limit of the temperature in the disposal site is likely shortened as the cooling time of spent fuels becomes short. Also it seems that the temperature-rising and-dropping patterns in the disposal site are of smoothly varying form as the cooling time of spent fuels becomes long. In addition, it is revealed that a desirable cooling time of spent fuels is approximately 40-50 years when spent fuels are supposedly disposed in the deep geological disposal site with its structural scale under consideration in this study.

  • PDF

A Study on the Characteristics Assessment and Fabrication of Distribution Board according to KEMC Standards (KEMC 규정에 의한 분전반의 제작 및 특성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2017
  • This study fabricated a low-voltage 10 circuit distribution board based on the KEMC (Korea Electrical Manufacturers Cooperative) 2102-610 standard and performed a characteristics assessment of the developed 10 circuit distribution board to secure product stability. The developed 10 circuit distribution board is designed to have the characteristics of insulation materials, as well as resistance to corrosion ultraviolet radiation and mechanical impact. The developed distribution board is fabricated to have an appropriate protection class of enclosure, electric shock prevention and protection circuits, switchgear and its components, internal electrical circuits and connectors, external conduct terminal, insulation characteristics, temperature rise test, heat resistance, etc. The developed 10 circuit distribution board consists of a single phase circuit and 3-phase circuits. It is possible to measure in real time the leakage current generated from the load distribution line by installing a sensor module at the load side of each of the branched switchgears. In addition, it is possible to increase a circuit according to the use and purpose of the load and to also manage and check the load in real time. Temperature rise tests were performed on the developed 10 circuit distribution board at 18 places including the inlet connection, main circuit and distribution circuit bus bars and bus bar supports, etc. The highest temperature of $65.3^{\circ}C$ was measured at the R-Phase of the connection of the MCCB power supply for the branch circuit bus bar and a temperature rise of $61.6^{\circ}C$ was measured at the T-Phase of the load side. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state.

Development of a hygroscopic polymer-coated QCM humidity sensor and its characteristics (감습 고분자막이 코팅된 수정미소저울 습도센서 제작 및 특성연구)

  • Kwon, Su-Yong;Kim, Jong-Chul;Choi, Byung-Il;Nham, Hyun-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.395-401
    • /
    • 2005
  • A highly stable quartz crystal microbalance (QCM) that showed a stability of frequencies and exhibited a very low noise level has been developed. The long-term drift was <0.05 Hz/h over a period of 10 h, and the short-term rms (root mean square) noise was <0.015 Hz. Our QCM sensor was used as a humidity sensor employing a poly(methyl methacrylate) (PMMA) polymer film as a hygroscopic layer, which showed good characteristics in the relative humidity (RH) range of $2{\sim}90%$ RH. Comparing the characteristics of the QCM sensor with those of other types of humidity sensors employing PMMA film as a hygroscopic layer, and with other QCM sensors employing other hygroscopic layers is represented.

The Sensitivity Analysis and Modeling for the Atmospheric Dispersion of Point Source (점오염원의 대기확산에 관한 민감도 분석과 모델링)

  • 이화운;원경미;배성정
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • The sensitivity analysis of two short-term models (ISCST3, INPUFF2.5) is performed to improve the model accuracy. It appears that the sensitivities on the changes of wind speed, stack height and stack inner diameter in the near distance from source, stability and mixing height in the remote distance form source, are significant. Also the gas exit velocity, stack inner diameter, gas temperature and air temperature which affect the plume rise have some effects on the concentration values of each model within the downwind distance where final plume rise is determined. And in modeling for the atmospheric dispersion of point pollutant source INPUFF2.5 can calculate amount, trajectory of puff and concentration versus time at each receptors. So, it is compatible to analyze distribution of point pollutants concentration at modeling area.

  • PDF

Chiral Separation of Tryptophan Enantiomers by Liquid Chromatography with BSA-Silica Stationary Phase

  • Kim Kwonil;Lee Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • The separation of tryptophan enantiomers was carried out with medium-pressure liquid chromatography using BSA (bovine serum albumin)-bonded silica as a chiral stationary phase. The influence of various experimental factors such as pH and ionic strength of mobile phase, separation temperature, and the presence of organic additives on the resolution was studied. In order to expand this system to preparative scale, the loadability of sample and the stability of stationary phase for repeated use were also examined. The separation of tryptophan enantiomers was successful with this system. The data indicated that a higher separation factor (a) was obtained at a higher pH and lower temperature and ionic strength in mobile phase. Addition of organic additives (acetonitrile and 2-propanol) in mobile phase contributed to reduce the retention time of L-tryptophan. About $30\%$ of the separation factor was reduced after 80 days of repeated use.

  • PDF

Stability of Cinnamadehyde and Cinnamic acid of Cinnamomi Cortex Preparations (계피함유 제제의 Cinnamaldehyde 및 Cinnamic acid의 안정성)

  • Lee, Yu-Jin;Park, Hee-Juhn;Park, Jong-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.1 s.144
    • /
    • pp.53-55
    • /
    • 2006
  • Using HPLC, we examined quantitative change of cinnamaldehyde and cinnamic acid, caused by time-progress and temperature-change for the Cinnamoni Cortex preparations, Gye Ji Ryung Whan(桂枝茯?丸), Pal Mi Ji Whang Whan(八味地黃丸) and Do Haig Sung Ki Tang(桃核承氣湯). The content of cinnamaldehyde significantly decreased by the increase of temperature. It is suggested that cinnamaldehyde and cinnamic acid are considerably stable when kept frozen.

Characteristics of Culture for Emulsive Biosurfactant-Strain from the Soil (토양으로부터 분리한 유화성 생체계면활성 균주의 배양 특성)

  • 임윤택;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.69-77
    • /
    • 1996
  • The result of isolated and selected to the strain having the emulsifying activity from soil's strain the strain was identified as Candida genus. The strain was investigated with culture condition at pH culture temperature, flow rate of air, strring rate etc., and physicochemical properties of the biosurfactant were examined. The optimum composition of medium for a strain cultivation were obtained as follow : glucose ; 100g/L, yeast extract ; 10g/L, urea ; 1.0g/L, KH$_{2}$PO$_{4}$ ; 50mg/L, MgSO$_{4}$ ; 500mg/L, and the op condition of cultivation was as follow : pH ; 3.0, temperatlue ; 24$\circ $C, strring rate ; 40rpm. The maximum yield of biosurfactant was obtained by pH ; 3.0-3.5, and temperature ; 25$\circ $C. The degree of emulsification of syntesized biosurfactant was increased clearly by increasing concentration of biosurfactant and it's stability was maintained for a long time. The surface tension of biosurfactant was varied with pH, especially it was showed that the surface tension was high at acidic pH.

  • PDF

Reinforcing Effects of Micro-Piles in a high Cut Slope (장대사면 내 억지말뚝의 억제효과 (현장 Case-Study 중심으로))

  • 정성윤;김경태;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.374-381
    • /
    • 2002
  • Several sensor systems are used to estimate the reinforceing effect of pile in hihg cut slopes, and to find a failure zone in slopes effectively. Inclinometer, extensometer and V/W sensor have shown a great potentiality to serve real time health monitoring of the slope structures. They were embedded or attached to the structures, we conducted field tests and test results have shown great solutions for sensor systems of Civil Engineering Smart Structures. This research is to seek for the relationships among the slope movement and the reinforceing effect of pile, and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the relationships. Also, the relationships between temperature and reinforceing effect of pile, and the strain distribution are estimated in this paper.

  • PDF