• Title/Summary/Keyword: Temperature forecast

Search Result 390, Processing Time 0.022 seconds

Forecasting the Sea Surface Temperature in the Tropical Pacific by Neural Network Model (신경망 모델을 이용한 적도 태평양 표층 수온 예측)

  • Chang You-Soon;Lee Da-Un;Seo Jang-Won;Youn Yong-Hoon
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.268-275
    • /
    • 2005
  • One of the nonlinear statistical modelling, neural network method was applied to predict the Sea Surface Temperature Anomalies (SSTA) in the Nino regions, which represent El Nino indices. The data used as inputs in the training step of neural network model were the first seven empirical orthogonal functions in the tropical Pacific $(120^{\circ}\;E,\;20^{\circ}\;S-20^{\circ}\;N)$ obtained from the NCEP/NCAR reanalysis data. The period of 1951 to 1993 was adopted for the training of neural network model, and the period 1994 to 2003 for the forecasting validation. Forecasting results suggested that neural network models were resonable for SSTA forecasting until 9-month lead time. They also predicted greatly the development and decay of strong E1 Nino occurred in 1997-1998 years. Especially, Nino3 region appeared to be the best forecast region, while the forecast skills rapidly decreased since 9-month lead time. However, in the Nino1+2 region where they are relatively low by the influence of local effects, they did not decrease even after 9-month lead time.

A Study on High-resolution Numerical Simulation with Detailed Classification of Landuse and Anthropogenic Heat in Seoul Metropolitan area (수도권지역의 지표이용도 및 인공열 상세적용에 따른 고해상도 수치실험 연구)

  • Lee, Hankyung;Jee, Joon-Bum;Min, Jae-Sik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.232-245
    • /
    • 2017
  • In this study, the high-resolution numerical simulation results considering landuse characteristics are analyzed by using single layer Urban Canopy Model (UCM) in Weather Research Forecast (WRF). For this, the impact of urban parameters such as roughness length and anthropogenic heat in UCM is analyzed. These values are adjusted to Seoul metropolitan area in Korea. The results of assessment are verified against observation from surface and flux tower. Forecast system equipped with UCM shows an overall improvement in the simulations of meteorological parameters, especially temperature at 2 m, surface sensible and latent heat flux. Major contribution of UCM is appreciably found in urban area rather than non-urban. The non-urban area is indirectly affected. In simulated latent heat flux, applying UCM is possible to simulate the change similarly with observations on urban area. Anthropogenic heat employed in UCM shows the most realistic results in terms of temperature and surface heat flux, indicating thermodynamic treatment of UCM could enhance the skills of high resolution forecast model in urban and non-urban area.

Nonlinear Regression Analysis to Determine Infection Models of Colletotrichum acutatum Causing Anthracnose of Chili Pepper Using Logistic Equation

  • Kang, Wee-Soo;Yun, Sung-Chul;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • A logistic model for describing combined effects of both temperature and wetness period on appressorium formation was developed using laboratory data on percent appressorium formation of Colletotrichum acutatum. In addition, the possible use of the logistic model for forecasting infection risks was also evaluated as compared with a first-order linear model. A simplified equilibrium model for enzymatic reactions was applied to obtain a temperature function for asymptote parameter (A) of logistic model. For the position (B) and the rate (k) parameters, a reciprocal model was used to calculate the respective temperature functions. The nonlinear logistic model described successfully the response of appressorium formation to the combined effects of temperature and wetness period. Especially the temperature function for asymptote parameter A reflected the response of upper limit of appressorium formation to temperature, which showed the typical temperature response of enzymatic reactions in the cells. By having both temperature and wetness period as independent variables, the nonlinear logistic model can be used to determine the length of wetness periods required for certain levels of appressorium formation under different temperature conditions. The infection model derived from the nonlinear logistic model can be used to calculate infection risks using hourly temperature and wetness period data monitored by automated weather stations in the fields. Compared with the nonlinear infection model, the linear infection model always predicted a shorter wetness period for appressorium formation, and resulted in significantly under- and over-estimation of response at low and high temperatures, respectively.

A Real Time Temperature Monitoring System for Plating Process (도금공정 실시간 원격 온도 모니터링 시스템)

  • Jung, Sun-Wung;Choi, Tae-Lin;Yoo, Woosik;Kim, Byung Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.72-79
    • /
    • 2015
  • A number of plating companies have been exposed to the risk of fire due to unexpected temperature increasing of water in a plating bath. Since the companies are not able to forecast the unexpected temperature increasing of water and most of raw materials in the plating process have low ignition temperature, it is easy to be exposed to the risk of fire. Thus, the companies have to notice the changes immediately to prevent the risk of fire from plating process. Due to this reason, an agile and systematic temperature monitoring system is required for the plating companies. Unfortunately, in case of small size companies, it is hard to purchase a systematic solution and be offered consulting from one of the risk management consulting companies due to an expensive cost. In addition, most of the companies have insufficient research and development (R&D) experts to autonomously develop the risk management solution. In this article, we developed a real time remote temperature monitoring system which is easy to operate with a lower cost. The system is constructed by using Raspberry Pi single board computer and Android application to release an economic issue for the small sized plating manufacturing companies. The derived system is able to monitor the temperature continuously with tracking the temperature in the batch in a short time and transmit a push-alarm to a target-device located in a remoted area when the temperature exceeds a certain hazardous-temperature level. Therefore, the target small plating company achieves a risk management system with a small cost.

Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration (데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측)

  • Kim, Yong-min;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • In this study, the PV output and module temperature values were predicted using the Meteorological Agency data and compared with actual data, weather, solar radiation, ambient temperature, and wind speed. The forecast accuracy by weather was the lowest in the data on a clear day, which had the most data of the day when it was snowing or the sun was hit at dawn. The predicted accuracy of the module temperature and the amount of power generation according to the amount of insolation decreased as the amount of insolation increased, and the predicted accuracy according to the ambient temperature decreased as the module temperature increased as the ambient temperature increased and the amount of power generated lowered the ambient temperature. As for wind speed, the predicted accuracy decreased as the wind speed increased for both module temperature and power generation, but it was difficult to define the correlation because wind speed was insignificant than the influence of other weather conditions.

Characteristics of Precipitation over the East Coast of Korea Based on the Special Observation during the Winter Season of 2012 (2012년 특별관측 자료를 이용한 동해안 겨울철 강수 특성 분석)

  • Jung, Sueng-Pil;Lim, Yun-Kyu;Kim, Ki-Hoon;Han, Sang-Ok;Kwon, Tae-Yong
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • The special observation using Radiosonde was performed to investigate precipitation events over the east coast of Korea during the winter season from 5 January to 29 February 2012. This analysis focused on the various indices to describe the characteristics of the atmospheric instability. Equivalent Potential Temperature (EPT) from surface (1000 hPa) to middle level (near 750 hPa) was increased when the precipitation occurred and these levels (1000~750 hPa) had moisture enough to cause the instability of atmosphere. The temporal evolution of Convective Available Potential Energy (CAPE) appeared to be enhanced when the precipitation fell. Similar behavior was also observed for the temporal evolution of Storm Relative Helicity (SRH), indicating that it had a higher value during the precipitation events. To understand a detailed structure of atmospheric condition for the formation of precipitation, the surface remote sensing data and Automatic Weather System (AWS) data were analyzed. We calculated the Total Precipitable Water FLUX (TPWFLUX) using TPW and wind vector. TPWFLUX and precipitation amount showed a statistically significant relationship in the north easterly winds. The result suggested that understanding of the dynamical processes such as wind direction be important to comprehend precipitation phenomenon in the east coast of Korea.

Development of Meso-scale Short Range NWP System for the Cheju Regional Meteorological Office, Korea (제주 지역에 적합한 중규모 단시간 예측 시스템의 개발)

  • Kim, Yong-Sang;Choi, Jun-Tae;Lee, Yong-Hee;Oh, Jai-Ho
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • The operational meso-scale short range NWP system was developed for Cheju Regional Meteorological Office located at Cheju island, Korea. The Central Meteorological Service Center, KMA has reported the information on numerical weather prediction every 12 hours. But this information is not enough to determine the detail forecast for the regional meteorological office because the terrain of the Korean peninsula is very complex and the resolution of the numerical model provided by KMA headquarter is too coarse to resolve the local severe weather system such as heavy rainfall. LAPS and MM5 models were chosen for three-dimentional data assimilation and numerical weather prediction tools respectively. LAPS was designed to provide the initial data to all regional numerical prediction models including MM5. Synoptic observational data from GTS, satellite brightness temperature data from GMS-5 and the composite reflectivity data from 5 radar sites were used in the LAPS data assimilation for producing the initial data. MM5 was performed on PC-cluster based on 16 pentium CPUs which was one of the cheapest distributed parallel computer in these days. We named this system as Halla Short Range Prediction System (HSRPS). HSRPS was verified by heavy rainfall case in July 9, 1999, it showed that HSRPS well resolved local severe weather which was not simulated by 30 km MM5/KMA. Especially, the structure of rainfall amount was very close to the corresponding observation. HSRPS will be operating every 6 hours in the Cheju Regional Meteorological Office from April 2000.

  • PDF

WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer (WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증)

  • Byun, Ui-Yong;Hong, Song-You;Shin, Hyeyum;Lee, Ji-Woo;Song, Jae-Ik;Hahm, Sook-Jung;Kim, Jwa-Kyum;Kim, Hyung-Woo;Kim, Jong-Suk
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

Development of Short-term Heat Demand Forecasting Model using Real-time Demand Information from Calorimeters (실시간 열량계 정보를 활용한 단기 열 수요 예측 모델 개발에 관한 연구)

  • Song, Sang Hwa;Shin, KwangSup;Lee, JaeHun;Jung, YunJae;Lee, JaeSeung;Yoon, SeokMann
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.17-27
    • /
    • 2020
  • District heating system supplies heat from low-cost high-efficiency heat production facilities to heat demand areas through a heat pipe network. For efficient heat supply system operation, it is important to accurately predict the heat demand within the region and optimize the heat production plan accordingly. In this study, a heat demand forecasting model is proposed considering real-time calorimeter information from local heat demands. Previous models considered ambient temperature and heat demand history data to predict future heat demands. To improve forecast accuracy, the proposed heat demand forecast model added big data from real-time calorimeters installed in the heat demands within the target region. By employing calorimeter information directly in the model, it is expected that the proposed forecast model is to reflect heat use pattern of each demand. Computational experiemtns based on the actual heat demand data shows that the forecast accuracy of the proposed model improved when the calorimeter big data is reflected.

Case Study on Characteristics of Heat Flux Exchange between Atmosphere and Ocean in the case of cP Expansion accompanying Snowfall over the Adjacent Sea of Jeju Island (제주연안에 강설을 수반하는 대륙성 한기단 확장 시 대기와 해양간의 열교환 특성 사례 연구)

  • Kim Kyoung-Bo;Pang Ig-Chan;Kim Kil-Yap;Kim Dong-Ho;Lee Jimi
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.395-403
    • /
    • 2005
  • This study is focused on the relationship between snowfall and the Bowen’s Ratio (sensible heat flux/latent heat flux) through calculation of heat exchange between air and sea for snowfall events in Jeju Island from 1993 to 2003. The four weather stations for this study are located at Jeju, Seoguipo, Seongsanpo and Gosan in Jeju Island. In order to improve the reliability of snowfall forecast, the Bowen’s Ratio for snowfall, which includes influences from the atmosphere such as wind, is compared with the temperature difference between air and sea for snowfall. As a results, in the case for fresh snowfall, the minimum temperature differences between air and sea were 10, 12.3, 11.5, and $14.3^{\circ}C$ at Jeju, Seoguipo, Seongsanpo and Gosan, respectively. The probabilities of fresh snowfall were 26, 29, 13, and $23\%$, respectively, when the temperature differences were higher than the previous values. On the other hand, the minimum Bowen ratios were 0.59, 0.60, 0.65 and 0.65 at Jeju, Seoguipo, Seongsanpo and Gosan, respectively. The probabilities of fresh snowfall were 33, 70, 31 and $58\%$ respectively, when the Bowen ratio is higher than those. The reason for this is because the probability of fresh snowfall with the Bowen ratio was higher than the probability with temperature difference between air and sea. This result occurred because heat exchange by wind increased the probability of snowfall, along with the temperature difference between air and sea, and the Bowen ratio. Therefore, snowfall forecast of Jeju Island is significantly influenced by the sea, whereas forecast with Bowen ratio seems to have higher reliability than that with the temperature difference between air and sea. The data analysis for the ten-year period $(1993\~2002)$ showed that when each fresh snowfall was within 0.0 to 0.9cm, the average Bowen’s ratio was 0.63 to 0.67, and when each fresh snowfall was 1.0 to 4.9 cm, the average Bowen’s ratio was over 0.72. Therefore, fresh snowfall shows a proportional relationship with the Bowen’s ratio during snowfall.