DOI QR코드

DOI QR Code

WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer

WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증

  • Byun, Ui-Yong (Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University, Seoul, Korea) ;
  • Hong, Song-You (Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University, Seoul, Korea) ;
  • Shin, Hyeyum (Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University, Seoul, Korea) ;
  • Lee, Ji-Woo (73rd Weather Group, Republic of Korea Air Force) ;
  • Song, Jae-Ik (73rd Weather Group, Republic of Korea Air Force) ;
  • Hahm, Sook-Jung (73rd Weather Group, Republic of Korea Air Force) ;
  • Kim, Jwa-Kyum (73rd Weather Group, Republic of Korea Air Force) ;
  • Kim, Hyung-Woo (73rd Weather Group, Republic of Korea Air Force) ;
  • Kim, Jong-Suk (73rd Weather Group, Republic of Korea Air Force)
  • Received : 2011.05.03
  • Accepted : 2011.06.15
  • Published : 2011.06.30

Abstract

The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

Keywords

References

  1. 김희식, 김영철, 2002: 수치모델을 이용한 강수형태예보. 대기, 12(1), 130-132.
  2. 엄대용, 이훈, 반기성, 2005: MM5-Noah LSM을 이용한 공군 최고/최저 기온 예측 성능 분석. 2005년도 한국기상학회 가을 학술대회 논문집, 2005.10, 414-415.
  3. 이수권, 김희식, 조정원, 2003: 공군 중규모 앙상블 예보 시스템의 여름철 강수 모의 성능 평가. 대기, 13(3), 282-283.
  4. 이지우, 홍성유, 2006: WRF 모형을 이용한 한반도 집중 호우에 대한 지형 효과의 수치 모의 연구. 대기, 16(4), 319-332.
  5. 조익현, 유희동, 임정옥, 2005: 차세대지역예보모델(KWRF) 구축과 시험운영. 2005년도 한국기상학회 봄 학술대회 논문집, 2005.4, 368-368.
  6. 조익현, 임은하, 유희동, 2010: 전지구 통합모델 기반 KWRF 모델 운영. 2010년도 한국기상학회 봄 학술대회 논문집, 2010.4, 233-234.
  7. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  8. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Pen State/NCAR mesoscale model. NCAR Tec Note, NCAR/TN-398 +STR, pp138.
  9. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  10. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
  11. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  12. Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q. J. R. Meteorol. Soc., 136, 1481-1496. https://doi.org/10.1002/qj.665
  13. Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55. https://doi.org/10.1175/JHM560.1
  14. Iacono, M.J., J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, and W.D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
  15. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  16. Kalnay, E., 2003: Atmospheric modeling, data assimilation and prediction. Cambridge University Press, 341 pp.
  17. Kim, E.-J., and S.-Y. Hong, 2010: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.
  18. Kwun, J.-H., and S.-H. You, 2009: Numerical study of sea winds simulated by the high-resolution weather research and forecasting (WRF) model. Asia-Pacific J. Atmos. Sci., 45(4).523-554.
  19. Lee, D.-K., and S.-J. Choi, 2010: Observation and numerical prediction of torrential rainfall over Korea caused by Typhoon Rusa (2002) . J. Geophys. Res., 115, D12105, doi:10.1029/2009JD012581.
  20. Lee, D.-K., 2010: Real-time high-resolution precipitation forecasts over Korea at JHWC-GPP. Preprints, The third international worksop on next-generation NWP models., Je-ju Island, Korea, Yonsei Univ., 7. [http://nml .yonsei.ac.kr /20100829/content / f i le/1-5%20Lee%20(SNU).pdf.]
  21. Lee, J.-G., S.-D. Kim, and Y.-J. Kim, 2011: A trajectory study on the heavy snowfall phenomenon in Yeongdong region of Korea. Asia-Pacific J. Atmos. Sci., 47(1).45-62.
  22. Lim, K.-S., and S.-Y. Hong, 2007: Numerical simulation of heavy snowfall over the Ho-Nam province of Korea in December 2005. J. Korean Meteor. Soc., 43, 161-173.
  23. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612. https://doi.org/10.1175/2009MWR2968.1
  24. Malwer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  25. Noh, Y., W. G. Chun, S.-Y. Hong and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401-427. https://doi.org/10.1023/A:1022146015946
  26. Shin, H.-Y., and S.-Y. Hong, 2009: Quantitative precipitation forecast experiments of heavy rainfall over Jeju island on 14-16 September 2007 using the WRF model. Asia-Pacific J. Atmos. Sci., 45(1), 71-89.
  27. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR technical note, NCAR/TN-468+STR.
  28. Tao, W.-K., J. Simpson, D. Baker, S. Braun, M.-D. Chou, B. Ferrier, D. Johnson, A. Khain, S. Lang, B. Lynn, C.-L. Shie, D. Starr, C.-H. Sui, Y. Wnag, and P. Wetzel, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. and Atmos. Phys., 82, 97-137. https://doi.org/10.1007/s00703-001-0594-7