• Title/Summary/Keyword: Temperature adaptation

Search Result 303, Processing Time 0.025 seconds

Effect of Elevated CO2 and Temperature on Growth, Yield and Physiological Responses of Major Rice Cultivars by Region in South Korea

  • Hae-Ran Kim;Young-Han You;Heon-Mo Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • The physiological characteristics, growth, and yield of each regional rice variety ('Odaebyeo', 'Saechucheong', 'Ilmibyeo') were investigated depending on the impact of changes in temperature and CO2 concentration. Experiments were conducted with a control group, which reflected atmospheric CO2 concentration and temperature, and treatment groups, in which the CO2 concentration and temperature were increased by 250 ppm and 2.0℃ from those in the control group. The results showed that the increase in CO2 concentration and temperature reduced the growth and yield of the rice 'Odaebyeo', but did not substantially change the productivity of the 'Saechucheong' and 'Ilmibyeo'. The increase in CO2 concentration and temperature increased stomatal conductance and rate of transpiration of the 'Odaebyeo' variety, thereby decreasing its water use efficiency (WUE). In contrast, the increase in CO2 concentration and temperature increased the photosynthetic rate and WUE of the 'Saechucheong' and 'Ilmibyeo' varieties. The gradual change in climate is considered to directly affect growth and development of rice and diversely affect the productivity of each variety. Therefore, it is necessary to implement technological development, select regionally optimal rice varieties, develop new rice varieties, as well as conduct long-term monitoring of each rice variety for climate adaptation to counter global warming.

Identification of csp Homolog in Bradyrhizobium japonicum

  • No, Jae-Sang;Yu, Ji-Cheol;So, Jae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.602-605
    • /
    • 2001
  • Low-temperature adaptation and protection for environmental stresses were studied in the gram-negative soil bacterium Bradyrhizobium japonicum 61A101c. B. japonicum was more resistant to alcohol, $H_2O_2$, heat and freezing following a pretreatment at $4^{\circ}C$, resulting in approximately 10 to 1,000 folds increased survival compared to mid-exponential-phase cells grown at an optimal temperature at $28^{\circ}C$. This phenomena relate to the cold shock protein expressed when cells are exposed to a downshift in temperature. To confirm the presence of cold shock protein genes in B. japonicum, a PCR strategy was employed using a degenerate primer set, which successfully amplified a putative csp gene fragment. Sequence analysis of the PCR product(200bp) revealed csp-like sequences that were up to 96% identical to csp gene of S. typhimurium.

  • PDF

The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions

  • Song, Young Hun
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.715-721
    • /
    • 2016
  • Plants have become physiologically adapted to a seasonally shifting environment by evolving many sensory mechanisms. Seasonal flowering is a good example of adaptation to local environmental demands and is crucial for maximizing reproductive fitness. Photoperiod and temperature are major environmental stimuli that control flowering through expression of a floral inducer, FLOWERING LOCUS T (FT) protein. Recent discoveries made using the model plant Arabidopsis thaliana have shown that the functions of photoreceptors are essential for the timing of FT gene induction, via modulation of the transcriptional activator CONSTANS (CO) at transcriptional and post-translational levels in response to seasonal variations. The activation of FT transcription by the fine-tuned CO protein enables plants to switch from vegetative growth to flowering under inductive environmental conditions. The present review briefly summarizes our current understanding of the molecular mechanisms by which the information of environmental stimuli is sensed and transduced to trigger FT induction in leaves.

The Effect of Shift Directions of Clinical Nurses on the Circadian Rhythm (임상 간호사의 교대근무 방향아 circadian rhythm 변화에 미치는 영향)

  • Hwang Ae-Ran;Chung Hyun-Sook;Kang Kyu-Sook;Lee Kyu-Jung
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.1 no.1
    • /
    • pp.77-97
    • /
    • 1994
  • The circadian system represents a temporal order which is mediated by the mutual coupling of oscillators and by the synchronizing effects of zeitgebers. It is known that well-being of man depends partly on the maintenance of this order, and that repeated or long lasting disturbances to it such as shift work will Cause harmful effects. This study was a quasi-experimental study to test the effect of shift directions for the clinical nurses on the circadian rhythm. Fourteen nurses working at the general units of Y hospital were selected according to the established criteria. Fourteen subjects were assigned to a weekly shift but the directions of shift work were phase delay first and then phase advance or vice versa. Oral temperature, total sleeping time, frequency of sleep-wake cycle, fatigue, mental performance, and physical symptom were measured during these days except holidays. The data collection period was from April 26, 1993 to July 3, 1993. MANOVA and Wilcoxon signed rank test were used for statistical analysis. The results are summarized as follows. 1. Having worked on evening and night shifts in either phase delay or phase advance schedules, temperature rhythms of shift workers were gradually adapted to the new sleep-wake cycles. A complete adaptation to work on the night shift was achieved the sixth day of the night shift in the phase delay schedule compared to the partial adaptation to the work on the night shift in the phase advance schedule. Accordingly, by putting evening shift between day and night shifts, it will be possible for circadian rhythm to adapt easily to the night shift. 2. There were differences in the total sleeping time, frequency of steep-wake cycle, fatigue, and physical symptom except for mental performance between night shift and day, evening shift. This indicates further that shift workers working on the night shift have a hard time adapting to the shift work compared to the other shifts. 3. Evaluating all the acrophases of temperature rhythm either in phase delay or phase ad-vance schedules, it was shown that night to evening shift in the phase ad-vance schedule revealed the smallest phase move. Also phase advance schedule showed poorer adaptation to shift work than phase delay schedule in connection with total sleeping time, frequency of sleep-wake cycle, fatigue, mental performance, and physical symptom. It is suggested, taken together, these findings reflect that phase delay schedule facilitated the degree of adjustment to the shift work compared to the phase advance schedule.

  • PDF

Modelling and Simulation on Non-isothermal Expansion of Water Oversaturated Perlite (퍼라이트 비등온 팽창 모델 및 전산모사)

  • Kim, Ji-Hwan;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.397-401
    • /
    • 2008
  • To verify model adaptation and flexibility, non-isothermal simulation for perlite expansion has been carried out. Temperature-dependent perlite properties are applied to energy equations for bubble temperature change and perlite melt temperature gradient. Bubble temperature is changed with volume change, water evaporation, and heat flux from melt. Temperature gradient of perlite melt is affected by decreasing bubble temperature. As a result, prediction model and code have been developed below 1100 K with 5% accuracy. At 1100~1400 K, lower 7% accuracy has been obtained from the calculation results.

Observation of the change of body temperature during the adaptation time in D.I.T.I (1) (적외선체열진단을 위한 외부온도 적응과정 중 체온변화 관찰 (1))

  • Park, Dae-Soon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • Journal of Oriental Medical Thermology
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2004
  • Purpose This study was performed to observe the change of body temperature during preparatory period. Method This study was carried out on 19 patients by D.I.T.I. The temperature was measured on Chondol(CV22), chonjung(CV17), the abdominal region and palm of Rt. and Lt. hand on every minutes for ten minutes. Result and Conclusion In male and female, until 6 minutes mean body temperature decreased but from 7 minutes it increased a little. Temperature in Chondol(CV22) and chonjung(CV17) also had similar tendency. However in the abdominal region temperature decreased and in palm of Rt. and Lt. hand it increased continously for ten minutes

  • PDF

Acclimation temperature influences the critical thermal maxima (CTmax) of red-spotted grouper

  • Rahman, Md Mofizur;Lee, Young-Don;Baek, Hea Ja
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.7
    • /
    • pp.235-242
    • /
    • 2021
  • The present study investigated the critical thermal maxima (CTmax) of red-spotted grouper, Epinephelus akaara under different acclimation temperatures (Tacc). Fish were acclimated at 24℃, 28℃, and 32℃ water temperature for 2 weeks. Water temperature was increased at a rate of 1℃/h and CTmax level was measured following the critical thermal methodology (Paladino et al., 1980). The results showed that CTmax values of E. akaara were 35.61℃, 36.83℃, and 37.65℃ for fish acclimated at 24℃, 28℃, and 32℃, respectively. The acclimation response ratio (ARR) was 0.26. The CTmax values were significantly correlated with body size. Collectively, it is said that the CTmax value of red-spotted grouper can be affected by different adaptation temperature (24℃, 28℃, and 32℃) and the fish acclimated to a higher temperature has a higher CTmax level. Besides, the CTmax value of 35.61℃-37.65℃ indicating the upper thermal tolerance limit for E. akaara under different Tacc (24℃, 28℃, and 32℃). Understanding the thermal tolerance of E. akaara is of ecological importance in the conservation of this species.

Molecular and Biochemical Characterization of a Novel Intracellular Low-Temperature-Active Xylanase

  • Zhou, Junpei;Dong, Yanyan;Tang, Xianghua;Li, Junjun;Xu, Bo;Wu, Qian;Gao, Yajie;Pan, Lu;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.501-509
    • /
    • 2012
  • A 990 bp full-length gene (xynAHJ2) encoding a 329-residue polypeptide (XynAHJ2) with a calculated mass of 38.4 kDa was cloned from Bacillus sp. HJ2 harbored in a saline soil. XynAHJ2 showed no signal peptide, distinct amino acid stretches of glycoside hydrolase (GH) family 10 intracellular endoxylanases, and the highest amino acid sequence identity of 65.3% with the identified GH 10 intracellular mesophilic endoxylanase iM-KRICT PX1-Ps from Paenibacillus sp. HPL-001 (ACJ06666). The recombinant enzyme (rXynAHJ2) was expressed in Escherichia coli and displayed the typical characteristics of low-temperature-active enzyme (exhibiting optimum activity at $35^{\circ}C$, 62% at $20^{\circ}C$, and 38% at $10^{\circ}C$; thermolability at ${\geq}45^{\circ}C$). Compared with the reported GH 10 low-temperature-active endoxylanases, which are all extracellular, rXynAHJ2 showed low amino acid sequence identities (<45%), low homology (different phylogenetic cluster), and difference of structure (decreased amount of total accessible surface area and exposed nonpolar accessible surface area). Compared with the reported GH 10 intracellular endoxylanases, which are all mesophilic and thermophilic, rXynAHJ2 has decreased numbers of arginine residues and salt bridges, and showed resistance to $Ni^{2+}$, $Ca^{2+}$, or EDTA at 10 mM final concentration. The above mechanism of structural adaptation for low-temperature activity of intracellular endoxylanase rXynAHJ2 is different from that of GH 10 extracellular low-temperature-active endoxylanases. This is the first report of the molecular and biochemical characterizations of a novel intracellular low-temperature-active xylanase.

Isolation and Characterization of Salt Tolerant Mutations in Budding Yeast Saccharomyces cerevisiae

  • Kim, Yung-Jin;Seo, Soo-Boon;Park, Shi-Young
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.22-25
    • /
    • 1999
  • In order to study the mechanism for the adaptation to salt stress, we mutagenized budding yeast Saccharomyces cerevisiae with Ethylmethane sulfonate, and isolated salt-tolerant mutants. Among the salt-tolerant mutants, two strains exhibit additional temperature sensitive phenotype. Here, we report that these two salt-tolerant mutants are specific to {TEX}$Na^{+}${/TEX} rather than general osmotic stress. These mutant strains may contain mutations in the genes involved in {TEX}$Na^{+}${/TEX} home-ostasis.

  • PDF

Estimation of Back EMF for the Sensorless Controlled High Speed PMSM (센서리스 제어 고속 동기전동기의 역기전력 추정)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.114-115
    • /
    • 2013
  • This paper proposes an estimation method of back emf for the sensorless controlled high speed PMSM drive in turbo compressors with air bearings. The back emf of PMSM motor varies due to the temperature variation, which deteriorates the control performance of sensorless controlled PMSM drives. The proposed method is based on the current model of the PMSM motor. The simulation results show that the proposed method estimates the back emf of sensorless controlled PMSM drives with reasonable accuracy for parameter adaptation.

  • PDF