Acknowledgement
This research was supported by a grant from the Korea Environment Industry & Technology Institute [2020002990001] funded by the Ministry of Environment in Republic of Korea.
References
- Baker, J.T., Jr L.H. Allen and K.J. Boote. 1992. Temperature effects on rice at elevated CO2 concentration. Journal of Experimental Botany 43(7): 959-964. https://doi.org/10.1093/jxb/43.7.959
- Bertolino, L.T., R.S. Caine and J.E. Gray. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science 10: 225.
- Caine, R.S., X. Yin, J. Sloan, E.L. Harrison, U. Mohammed, T. Fulton, A.K. Biswal, J. Dionora, C.C. Chater, R.A. Coe, A. Bandyopadhyay, E.H. Murchie, R. Swarup, W.P. Quick and J.E. Gray. 2019. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist 221(1): 371-384. https://doi.org/10.1111/nph.15344
- Chandio, A.A., H. Magsi and I. Ozturk. 2020. Examining the effects of climate change on rice production: case study of Pakistan. Environmental Science and Pollution Research 27(8): 7812-7822. https://doi.org/10.1007/s11356-019-07486-9
- Cheng, W., H. Sakai, K. Yagi and T. Hasegawa. 2009. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology 149(1): 51-58. https://doi.org/10.1016/j.agrformet.2008.07.006
- Conroy, J.P., S. Seneweera, A.S. Basra, G. Rogers and B. Nissen-Wooller. 1994. Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Functional Plant Biology 21(6): 741-758. https://doi.org/10.1071/PP9940741
- Dunn, J., L. Hunt, M. Afsharinafar, M.A. Meselmani, A. Mitchell, R. Howells, E. Wallington, A.J. Fleming and J.E. Gray. 2019. Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany 70(18): 4737-4748.
- IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- IPCC. 2018. Global Warming of 1.5 C. Summary for Policymakers.
- Kim, H.Y., J. Ko, S. Kang and J. Tenhunen. 2013. Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biology 19(2): 548-562. https://doi.org/10.1111/gcb.12047
- Kimball, B.A. 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology 31: 36-43. https://doi.org/10.1016/j.pbi.2016.03.006
- Lee, C.K., K.S. Kwak, J.H. Kim, J.Y. Son and W.H. Yang. 2011. Impact of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean Journal of Crop Science 56(3): 233-243. https://doi.org/10.7740/KJCS.2011.56.3.233
- Lee, K.J., D.J. Kim, H.Y. Ban and B.W. Lee. 2015a. Genotypic differences in yield and yield-related elements of rice under elevated air temperature conditions. Korean Journal of Agricultural and Forest Meteorology 17(4): 306-316. https://doi.org/10.5532/KJAFM.2015.17.4.306
- Lee, K.J., D.N. Nguyen, D.H. Choi, H.Y. Ban and B.W. Lee. 2015b. Effects for elevated air temperature on yield and yield components of rice. Korean Journal of Agricultural and Forest Meteorology 17(2): 156-164. https://doi.org/10.5532/KJAFM.2015.17.2.156
- Lin, W., L.H. Ziska, O.S. Namuco and K. Bai. 1997. The interaction of high temperature and elevated CO2 on photosynthetic acclimation of single leaves of rice in situ. Physiologia Plantarum 99(1): 178-184.
- Madan, P., S.V.K. Jagadish, P.Q. Craufurd, M. Fitzgerald, T. Lafarge and T.R. Wheeler. 2012. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. Journal of Experimental Botany 63(10): 3843-3852. https://doi.org/10.1093/jxb/ers077
- Morison, J.I. 1998. Stomatal response to increased CO2 concentration. Journal of Experimental Botany 49: 443-452. https://doi.org/10.1093/jxb/49.Special_Issue.443
- Oh, D.H., J.H. Ryu, Y.H. Cho, W.S. Kim and J.I. Cho. 2018. Evaluation of yield and growth responses on paddy rice under extremely high temperature using temperature gradient field chamber. Korean Journal of Agricultural and Forest Meteorology 20(1): 135-143.
- Portner, H.O., D.C. Roberts, M. Tignor, E. Poloczanska, K. Mintenbeck, A, Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem and B. Rama. 2022. Climate chagne 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report.
- Rejesus, R.M., S. Mohanty and J.V. Balagtas. 2012. Forecasting global rice consumption. Department of Agricultural and Resource Economics, North Carolina State University. Critical Reviews in Food Science and Nutrition 57: 2455-2481.
- Sakai, H., K. Yagi, K. Kobayashi and S. Kawashima. 2001. Rice carbon balance under elevated CO2. New Phytologist 150(2): 241-249. https://doi.org/10.1046/j.1469-8137.2001.00105.x
- Seo, M.C., J.H. Kim, K.J. Choi, Y.H. Lee, W.G. Sang, H.S. Cho, J.I. Cho, P. Shin and J.K. Baek. 2020. Review on Adaptability of Rice Varieties and Cultivation Technology According to Climate Change in Korea. Korean Journal of Crop Science 65(4): 327-338.
- Shim, K.M., K.A. Roh, K.H. So, G.Y. Kim, H.C. Jeong and D.B. Lee. 2010. Assessing Impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2): 121-131.
- Wang, W., C. Cai, J. He, J. Gu, G. Zhu, W. Zhang, J. Zhu and G. Liu. 2020. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research 248: 107605.
- Ziska, L.H., D.R. Gealy, M.B. Tomecek, A.K. Jackson and H.L. Black. 2012. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa). PloS One 7(5): e37522.
- Ziska, L.H., P.A. Manalo and R.A. Ordonez. 1996. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: growth and yield response of 17 cultivars. Journal of Experimental Botany 47(9): 1353-1359. https://doi.org/10.1093/jxb/47.9.1353