DOI QR코드

DOI QR Code

The List of Korean Organisms Registered in the NCBI Nucleotide Database for Environmental DNA Research

환경유전자 연구를 위한 NCBI Nucleotide 데이터베이스에 등록된 국내 생물 목록 현황

  • Ihn-Sil Kwak (Department of Ocean Integrated Science, Chonnam National University) ;
  • Chang Woo Ji (Fisheries Science Institute, Chonnam National University) ;
  • Won-Seok Kim (Department of Ocean Integrated Science, Chonnam National University) ;
  • Dongsoo Kong (Kyonggi University)
  • 곽인실 (전남대학교 해양융합과학과) ;
  • 지창우 (전남대학교 수산과학연구소) ;
  • 김원석 (전남대학교 해양융합과학과) ;
  • 공동수 (경기대학교 생명과학과)
  • Received : 2022.11.07
  • Accepted : 2022.12.17
  • Published : 2022.12.31

Abstract

Recently, with the development of genetic technology, interest in environmental DNA (eDNA) to study biodiversity according to molecular biological approaches is increasing. Environmental DNA has many advantages over traditional research methods for biological communities distributed in the environment but highly depends on the established base sequence database. This study conducted a comprehensive analysis of the habitat status and classification at the genus level, which is mainly used in eDNA (12S rRNA, 16S rRNA, 18S rRNA, COI, and CYTB), focusing on Korean registration taxon groups (phytoplankton, zooplankton, macroinvertebrates, and fish). As a result, phytoplankton and zooplankton showed the highest taxa proportion in 18S rRNA, and macroinvertebrates observed the highest ratio in the nucleotide sequence database in COI. In fish, all genes except 18S rRNA showed a high taxon ratio. Based on the Korean registration taxon group, the gene construction of the top 20 genera according to bio density observed that most of the phytoplankton were registered in 18S rRNA, and the most significant number of COI nucleotide sequences were established in macroinvertebrates. In addition, it was confirmed that there is a nucleotide sequence for the top 20 genera in 12S rRNA, 16S rRNA, and CYTB in fish. These results provided comprehensive information on the genes suitable for eDNA research for each taxon group.

국내 서식하는 수서 생물(식물플랑크톤, 동물플랑크톤, 저서대형무척추동물, 어류)에 대한 eDNA 연구에 주요 이용되는 유전자인 12S rRNA와 16S rRNA, 18S rRNA, COI, CYTB를 대상으로 속(Genus) 수준의 등록 현황을 조사하였다. 그 결과 식물플랑크톤과 동물플랑크톤은 18S rRNA에서 가장 높은 등록 속 비율을 보였으며, 저서무척추동물은 COI에서 가장 높은 등록 속 비율을 확인하였다. 어류에서는 18S rRNA를 제외한 모든 유전자에서 90%에 가까운 높은 비율을 보였다. 분류군에 따른 우점 생물의 상위 20속에 대한 유전자 등록 현황은 식물플랑크톤은 18S rRNA에서 19속이, 저서무척추동물은 COI에서 18개 속이 등록되어 있었다. 어류에서는 12S rRNA, 16S rRNA, CYTB에서 상위 20의 모든 유전자 염기서열이 존재함을 확인하였다. 본 자료 분석을 통하여 각 분류군별 eDNA 연구에 적합한 유전자 데이터베이스의 양적인 정보를 파악하였다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원(과제번호: 2021003050001, 2022003050006)과 한국연구재단의 지원(NRF-2018R1A6A1A03024314)을 받아 연구되었습니다.

References

  1. AlgaeBase. 2022. Listing the World's Algae. https://www.algaebase.org.
  2. Amaral-Zettler, L.A., E.A. McCliment, H.W. Ducklow and S.M. Huse. 2009. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. Plos One 4(7): e6372.
  3. Beng, K.C. and R.T. Corlett. 2020. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation 29(7): 2089-2121. https://doi.org/10.1007/s10531-020-01980-0
  4. Burivalova, Z., E.T. Game and R.A. Butler. 2019. The sound of a trophic forest. Science 363(6422): 28-29. https://doi.org/10.1126/science.aav1902
  5. Bylemans, J., D.M. Gleeson, C.M. Hardy and E. Furlan. 2018. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). Ecology and Evolution 8: 8697-8712. https://doi.org/10.1002/ece3.4387
  6. Carraro, L., E. Machler, R. Wuthrich and F. Altermatt. 2020. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nature Communications 11(1): 1-12. https://doi.org/10.1038/s41467-019-13993-7
  7. Djurhuus, A., C.J. Closek, R.P. Kelly, K.J. Pitz, R.P. Michisaki, H.A. Starks, K.R. Walz, E.A. Andruszkiewicz, E. Olesin, K. Hubbard, E. Montes, D. Otis, F.E. Muller-Karger, F.P. Chavez, A.B. Boehm and M. Breitbart. 2020. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nature Communications 11(1): 1-9. https://doi.org/10.1038/s41467-019-13993-7
  8. Ji, C.W., H.-J. Oh, K.-H. Chang, Y.-S. Park and I.-S. Kwak. 2022. A Comparative Analyzing of Zooplankton Community Diversity in Surface Layer Water of Reservoir Via eDNA Metabarcoding and Microscopy. Diversity 14: 797.
  9. Keck, F., V. Vasselon, K. Tapolczai, F. Rimet and A. Bouchez. 2017. Freshwater biomonitoring in the Information Age. Frontiers in Ecology and the Environment 15: 266-274. https://doi.org/10.1002/fee.1490
  10. KOEM (Korea marine environment management corporation). 2019. National marine ecosystem monitoring program.
  11. Kwak, I.S., Y.S. Park and K.H. Chang. 2021. Application and utilization of environmental DNA technology for biodiversity in water ecosystems. Korean Journal of Ecology and Environment 54(3): 151-155. https://doi.org/10.11614/KSL.2021.54.3.151
  12. MERK (Ministry of Environment in Republic of Korea). 2020a. Estuarine Ecosystem Monitoring and Assessment Project.
  13. MERK (Ministry of Environment in Republic of Korea). 2020b. Stream/River ecosystem survey and health assessment.
  14. Miya, M., Y. Sato, T. Fukunaga, T. Sado, J.Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Tamanaka, H. Araki, M. Kondoh and W. Iwasaki. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtrophical marine species. Royal Society Open Science 2(7): 150088.
  15. NCBI (National Center for Biotechnology Information). 2021. NCBI Nucleotide database. https://www.ncbi.nlm.nih.gov/nucleotide/.
  16. NIBR (National Institute of Biological Resources). 2022. National list of Korea. National Institute of Biological Resources. Incheon, Korea, Accessed 31 Dec 2022. https://species.nibr.go.kr.
  17. NMBIK (National Marine Biodiversity Institute of Korea). 2017. National list of marine species. https://www.mabik.re.kr/html/kr/#txt.
  18. NNIBR(Nakdonggang National Institute of Biological Resources). 2022. List of freshwater species in Korea. https://fbp.nnibr.re.kr/portal/.
  19. Oh, H.-J., Y.-J. Chae, Y. Choi, D. Ku, Y.-J. Heo, I.-S. Kwak, H. Jo, Y.-S. Park, K.-H. Chang, H.-W. Kim. 2019. Review and Suggestions for Applying DNA Sequencing to Zooplankton Researches: from Taxonomic Approaches to Biological Interaction Analysis. Korean Journal of Ecology and Environment 54: 156-169.
  20. Park, Y., J.-H. Lee, J.-R. Cho, G.-S. Lee, C.W. Ji. 2019. A survey for manual identification rate of insect images on different image quality. The Journal of the Korean Society of International Agriculture 31(4): 424-427. https://doi.org/10.12719/KSIA.2019.31.4.424
  21. Rajan, S.C., K. Athira, R. jaishanker, N.P. Sooraj and V. Sarojkumar. 2019. Rapid assessment of biodiversity using aquatic indices. Biodiversity and Conservation 28: 2371-2383. https://doi.org/10.1007/s10531-018-1673-0
  22. Rangaswamy, R., C.W. Ji, W.S. Kim, J.W. Park, Y.J. Kim and I.S. Kwak. 2022. Profiling analysis of filter feeder Polypedilum (Chironomidae) gut contents using eDNA metabarcoding following contrasting habitat types-weir and stream. International Journal of Environmental Research and Public Health 19(17): 10945.
  23. Rivera, S.F., V. Vasselon, N. Mary, O. Monnier, F. Rimet and A. Bouchez. 2021. Exploring the capacity of aquatic biofilms to act as environmental DNA samplers: test on macroinvertebrate communities in rivers. Science of the Total Environment 763: 144208.
  24. Shu, L., A. Ludwig and Z. Peng. 2020. Standards for methods utilizing environmental DNA for detection of fish species. Genes 11(3): 296.
  25. Song, H., W.S. Kim, J.W. Park and I.S. Kwak. 2022. Identification of bacterial communities in laboratory-adapted Glyptotendipes tokunagai and wild-stream-inhabiting Chironomus flaviplumus. Microorganisms 10(11): 2107.
  26. Stoeckle, B.C., R. Kuehn and J. Geist. 2016. Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches? Aquatic Conservation: Marine and Freshwater Ecosystems 26(6): 1120-1129. https://doi.org/10.1002/aqc.2611
  27. Thomsen, P.F. and E. Willerslev. 2015. Environmental DNA-an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4-18. https://doi.org/10.1016/j.biocon.2014.11.019
  28. Weigand, H., A.J. Beermann, F. Ciampor, F.O. Costa, Z. Csabai, S. Duarte, M.F. Geiger, M. Grabowski, F. Rimet and B. Rulik. 2019. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Science of the Total Environment 678: 499-524. https://doi.org/10.1016/j.scitotenv.2019.04.247
  29. WORMS. 2022. World Register of Marine Species. https://www.marinespecies.org.
  30. Zhang, Y., M. Pavlovska, E. Stoica, I. Prekrasna, J. Yang, J. Slobodnik, X. Zhang and E. Dykyi. 2020. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. Environmental International 135: 105307.