DOI QR코드

DOI QR Code

The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions

  • Received : 2016.10.12
  • Accepted : 2016.10.17
  • Published : 2016.10.31

Abstract

Plants have become physiologically adapted to a seasonally shifting environment by evolving many sensory mechanisms. Seasonal flowering is a good example of adaptation to local environmental demands and is crucial for maximizing reproductive fitness. Photoperiod and temperature are major environmental stimuli that control flowering through expression of a floral inducer, FLOWERING LOCUS T (FT) protein. Recent discoveries made using the model plant Arabidopsis thaliana have shown that the functions of photoreceptors are essential for the timing of FT gene induction, via modulation of the transcriptional activator CONSTANS (CO) at transcriptional and post-translational levels in response to seasonal variations. The activation of FT transcription by the fine-tuned CO protein enables plants to switch from vegetative growth to flowering under inductive environmental conditions. The present review briefly summarizes our current understanding of the molecular mechanisms by which the information of environmental stimuli is sensed and transduced to trigger FT induction in leaves.

Keywords

References

  1. Andres, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627-639. https://doi.org/10.1038/nrg3291
  2. Burghardt, L.T., Runcie, D.E., Wilczek, A.M., Cooper, M.D., Roe, J.L., Welch, S.M., and Schmitt, J. (2016). Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. New Phytol. 210, 564-576. https://doi.org/10.1111/nph.13799
  3. Cao, S., Kumimoto, R.W., Gnesutta, N., Calogero, A.M., Mantovani, R., and Holt, B.F. 3rd. (2014). A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis. Plant Cell 26, 1009-1017. https://doi.org/10.1105/tpc.113.120352
  4. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033 https://doi.org/10.1126/science.1141752
  5. Craufurd, P.Q., and Wheeler, T.R. (2009). Climate change and the flowering time of annual crops. J. Exp. Bot. 60, 2529-2539. https://doi.org/10.1093/jxb/erp196
  6. Fernandez, V., Takahashi, Y., Le Gourrierec, J., and Coupland, G. (2016). Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J. 86, 426-440. https://doi.org/10.1111/tpj.13183
  7. Fitter, A.H., and Fitter, R.S. (2002). Rapid changes in flowering time in British plants. Science 296, 1689-1691. https://doi.org/10.1126/science.1071617
  8. Fornara, F., Panigrahi, K.C., Gissot, L., Sauerbrunn, N., Ruhl, M., Jarillo, J.A., and Coupland, G. (2009). Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell 17, 75-86. https://doi.org/10.1016/j.devcel.2009.06.015
  9. Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18, 4679-4688. https://doi.org/10.1093/emboj/18.17.4679
  10. Golembeski, G.S., Kinmonth-Schultz, H.A., Song, Y.H., and Imaizumi, T. (2014). Photoperiodic flowering regulation in Arabidopsis thaliana. Adv. Bot. Res. 72, 1-28.
  11. Hegland, S.J., Nielsen, A., Lazaro, A., Bjerknes, A.L., and Totland, O. (2009). How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184-195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
  12. Huang, W., Perez-Garcia, P., Pokhilko, A., Millar, A.J., Antoshechkin, I., Riechmann, J.L., and Mas, P. (2012). Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336, 75-79. https://doi.org/10.1126/science.1219075
  13. Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, WR., and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306. https://doi.org/10.1038/nature02090
  14. Imaizumi, T., Schultz, T.F., Harmon, F.G., Ho, L.A., and Kay, S.A. (2005). FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309, 293-297. https://doi.org/10.1126/science.1110586
  15. Ito, S., Song, Y.H., Josephson-Day, A.R., Miller, R.J., Breton, G., Olmstead, R.G., and Imaizumi, T. (2012). FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc. Natl. Acad. Sci. USA 109, 3582-3587. https://doi.org/10.1073/pnas.1118876109
  16. Jang, S., Marchal, V., Panigrahi, K.C., Wenkel, S., Soppe, W., Deng, X.W., Valverde, F., and Coupland, G. (2008). Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J. 27, 1277-1288. https://doi.org/10.1038/emboj.2008.68
  17. Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. The Plant Cell 19, 2736-2748. https://doi.org/10.1105/tpc.107.054528
  18. Jung, J.H., Seo, P.J., and Park, C.M. (2012). The E3 Ubiquitin Ligase HOS1 Regulates Arabidopsis Flowering by Mediating CONSTANS Degradation Under Cold Stress. J. Biol. Chem. 287, 43277-43287. https://doi.org/10.1074/jbc.M112.394338
  19. Kim, W.Y., Fujiwara, S., Suh, S.S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., and Somers, D.E. (2007). ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356-360. https://doi.org/10.1038/nature06132
  20. Kim, S.Y., Yu, X., and Michaels, S.D. (2008). Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant physiol. 148, 269-279. https://doi.org/10.1104/pp.108.122606
  21. Kim, D.H., Doyle, M.R., Sung, S., and Amasino, R.M. (2009). Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25, 277-299. https://doi.org/10.1146/annurev.cellbio.042308.113411
  22. Kinmonth-Schultz, H.A., Tong, X., Lee, J., Song, Y.H., Ito, S., Kim, S.H., and Imaizumi, T. (2016). Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. New Phytol. 211, 208-224. https://doi.org/10.1111/nph.13883
  23. Kobayashi, Y., and Weigel, D. (2007) Move on up, it's time for change--mobile signals controlling photoperiod-dependent flowering. Genes Dev. 21, 2371-2384. https://doi.org/10.1101/gad.1589007
  24. Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alos, E., Alvey, E., Harberd, .NP., and Wigge, P.A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242-245. https://doi.org/10.1038/nature10928
  25. Kumimoto, R.W., Zhang, Y., Siefers, N., and Holt, B.F.3rd. (2010). NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANSmediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J. 63, 379-391. https://doi.org/10.1111/j.1365-313X.2010.04247.x
  26. Laubinger, S., Marchal, V., Gentilhomme, J., Wenkel, S., Adrian, J., Jang, S., Kulajta, C., Braun, H., Coupland, G., and Hoecker, U. (2006). Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133, 3213-3222. https://doi.org/10.1242/dev.02481
  27. Lazaro, A., Valverde, F., Pineiro, M., and Jarillo, J.A. (2012). The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24, 982-999. https://doi.org/10.1105/tpc.110.081885
  28. Lazaro, A., Mouriz, A., Pineiro, M., and Jarillo, J.A. (2015). Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis. Plant Cell 27, 2437-2454. https://doi.org/10.1105/tpc.15.00529
  29. Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21, 397-402. https://doi.org/10.1101/gad.1518407
  30. Lee, J.H., Ryu, H.S., Chung, K.S., Pose, D., Kim, S., Schmid, M., and Ahn, J.H. (2013). Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342, 628-632. https://doi.org/10.1126/science.1241097
  31. Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C. (2008a). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535-1539. https://doi.org/10.1126/science.1163927
  32. Liu, L.J., Zhang, Y.C., Li, Q.H., Sang, Y., Mao, J., Lian, H.L., Wang, L., and Yang, H.Q. (2008b). COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. The Plant Cell 20, 292-306. https://doi.org/10.1105/tpc.107.057281
  33. Liu, H., Wang, Q., Liu, Y., Zhao, X., Imaizumi, T., Somers, D.E., Tobin, E.M., and Lin, C. (2013a). Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc. Natl. Acad. Sci. USA 110, 17582-17587. https://doi.org/10.1073/pnas.1308987110
  34. Liu, Y., Li, X., Li, K., Liu, H., and Lin, C. (2013b). Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet. 9, e1003861. https://doi.org/10.1371/journal.pgen.1003861
  35. Nakamichi, N., Kita, M., Niimura, K., Ito, S., Yamashino, T., Mizoguchi, T., and Mizuno, T. (2007). Arabidopsis clock-associated pseudo-response Regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. 48, 822-832. https://doi.org/10.1093/pcp/pcm056
  36. Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N.H., and Sakakibara, H. (2010). PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the arabidopsis circadian clock. Plant Cell 22, 594-605. https://doi.org/10.1105/tpc.109.072892
  37. Pin, P.A., and Nilsson, O. (2012). The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ. 35, 1742-1755. https://doi.org/10.1111/j.1365-3040.2012.02558.x
  38. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613-1616. https://doi.org/10.1126/science.288.5471.1613
  39. Sawa, M., and Kay, S.A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 108, 11698-11703. https://doi.org/10.1073/pnas.1106771108
  40. Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261-265. https://doi.org/10.1126/science.1146994
  41. Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A., and Coupland, G. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219-1229. https://doi.org/10.1016/S0092-8674(00)81465-8
  42. Seaton, D.D., Smith, R.W., Song, Y.H., MacGregor, D.R., Stewart, K., Steel, G., Foreman, J., Penfield, S., Imaizumi, T., Millar, A.J., et al. (2015). Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol. Syst. Biol. 11, 776. https://doi.org/10.15252/msb.20145766
  43. Song, Y.H., Ito, S., and Imaizumi, T. (2010). Similarities in the circadian clock and photoperiodism in plants. Curr. Opin. Plant Biol. 13, 594-603. https://doi.org/10.1016/j.pbi.2010.05.004
  44. Song, Y.H., Lee, I., Lee, S.Y., Imaizumi, T., and Hong, J.C. (2012a). CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. Plant J. 69, 332-342. https://doi.org/10.1111/j.1365-313X.2011.04793.x
  45. Song, Y.H., Smith, R.W., To, B.J., Millar, A.J., and Imaizumi, T. (2012b). FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336, 1045-1049. https://doi.org/10.1126/science.1219644
  46. Song, Y.H., Ito, S., and Imaizumi, T. (2013). Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18, 575-583. https://doi.org/10.1016/j.tplants.2013.05.003
  47. Song, Y.H., Estrada, D.A., Johnson, R.S., Kim, S.K., Lee, S.Y., MacCoss, M.J., and Imaizumi, T. (2014). Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering. Proc. Natl. Acad. Sci. USA 111, 17672-17677. https://doi.org/10.1073/pnas.1415375111
  48. Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., and Imaizumi, T. (2015). Photoperiodic flowering: time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66, 441-464. https://doi.org/10.1146/annurev-arplant-043014-115555
  49. Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120. https://doi.org/10.1038/35074138
  50. Takase, T., Nishiyama, Y., Tanihigashi, H., Ogura, Y., Miyazaki, Y., Yamada, Y., and Kiyosue, T. (2011). LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J. 67, 608-621. https://doi.org/10.1111/j.1365-313X.2011.04618.x
  51. Thomas, B., and Vince-Prue, D. (1996). Photoperiodism in plants. Academic Press.
  52. Tiwari, S.B., Shen, Y., Chang, H.C., Hou, Y., Harris, A., Ma, S.F., McPartland, M., Hymus, G.J., Adam, L., Marion, C., et al. (2010). The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 187, 57-66. https://doi.org/10.1111/j.1469-8137.2010.03251.x
  53. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006. https://doi.org/10.1126/science.1091761
  54. Wang, Z.Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217. https://doi.org/10.1016/S0092-8674(00)81464-6
  55. Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A., and Coupland, G. (2006). CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. The Plant Cell 18, 2971-2984. https://doi.org/10.1105/tpc.106.043299
  56. Wilczek, A.M., Roe, J.L., Knapp, M.C., Cooper, M.D., Lopez-Gallego, C., Martin, L.J., Muir, C.D., Sim, S., Walker, A., Anderson, J., et al. (2009). Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930-934. https://doi.org/10.1126/science.1165826
  57. Zuo, Z., Liu, H., Liu, B., Liu, X., and Lin, C. (2011). Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr. Biol. 21, 841-847. https://doi.org/10.1016/j.cub.2011.03.048

Cited by

  1. Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress vol.8, 2017, https://doi.org/10.3389/fpls.2017.00681
  2. Floral Induction and Flower Development of Orchids vol.10, pp.None, 2016, https://doi.org/10.3389/fpls.2019.01258
  3. FLOWERING HTH1 is involved in CONSTANS-mediated flowering regulation in Arabidopsis vol.62, pp.1, 2016, https://doi.org/10.1186/s13765-019-0465-x