• Title/Summary/Keyword: CONSTANS

Search Result 12, Processing Time 0.027 seconds

The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions

  • Song, Young Hun
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.715-721
    • /
    • 2016
  • Plants have become physiologically adapted to a seasonally shifting environment by evolving many sensory mechanisms. Seasonal flowering is a good example of adaptation to local environmental demands and is crucial for maximizing reproductive fitness. Photoperiod and temperature are major environmental stimuli that control flowering through expression of a floral inducer, FLOWERING LOCUS T (FT) protein. Recent discoveries made using the model plant Arabidopsis thaliana have shown that the functions of photoreceptors are essential for the timing of FT gene induction, via modulation of the transcriptional activator CONSTANS (CO) at transcriptional and post-translational levels in response to seasonal variations. The activation of FT transcription by the fine-tuned CO protein enables plants to switch from vegetative growth to flowering under inductive environmental conditions. The present review briefly summarizes our current understanding of the molecular mechanisms by which the information of environmental stimuli is sensed and transduced to trigger FT induction in leaves.

GIGANTEA Regulates the Timing Stabilization of CONSTANS by Altering the Interaction between FKF1 and ZEITLUPE

  • Hwang, Dae Yeon;Park, Sangkyu;Lee, Sungbeom;Lee, Seung Sik;Imaizumi, Takato;Song, Young Hun
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.693-701
    • /
    • 2019
  • Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In Arabidopsis, the diel and seasonal regulation of CONSTANS (CO) protein stability is crucial for the induction of FLOWERING LOCUS T (FT) gene in long days. FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL) proteins control the shape of CO expression profile antagonistically, although regulation mechanisms remain unknown. In this study, we show that GIGANTEA (GI) protein modulates the stability and nuclear function of FKF1, which is closely related to the stabilization of CO in the afternoon of long days. The abundance of FKF1 protein is decreased by the gi mutation, but increased by GI overexpression throughout the day. Unlike the previous report, the translocation of FKF1 to the nucleus was not prevented by ZTL overexpression. In addition, the FKF1-ZTL complex formation is higher in the nucleus than in the cytosol. GI interacts with ZTL in the nucleus, implicating the attenuation of ZTL activity by the GI binding and, in turn, the sequestration of FKF1 from ZTL in the nucleus. We also found that the CO-ZTL complex presents in the nucleus, and CO protein abundance is largely reduced in the afternoon by ZTL overexpression, indicating that ZTL promotes CO degradation by capturing FKF1 in the nucleus under these conditions. Collectively, our findings suggest that GI plays a pivotal role in CO stability for the precise control of flowering by coordinating balanced functional properties of FKF1 and ZTL.

Isolation of CONSTANS as a TGA4/OBF4 Interacting Protein

  • Song, Young Hun;Song, Na Young;Shin, Su Young;Kim, Hye Jin;Yun, Dae-Jin;Lim, Chae Oh;Lee, Sang Yeol;Kang, Kyu Young;Hong, Jong Chan
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.559-565
    • /
    • 2008
  • Members of the TGA family of basic domain/leucine zipper transcription factors regulate defense genes through physical interaction with NON-EXPRESSOR OF PR1 (NPR1). Of the seven TGA family members, TGA4/octopine synthase (ocs)-element-binding factor 4 (OBF4) is the least understood. Here we present evidence for a novel function of OBF4 as a regulator of flowering. We identified CONSTANS (CO), a positive regulator of floral induction, as an OBF4-interacting protein, in a yeast two-hybrid library screen. OBF4 interacts with the B-box region of CO. The abundance of OBF4 mRNA cycles with a 24 h rhythm under both long-day (LD) and short-day (SD) conditions, with significantly higher levels during the night than during the day. Electrophoretic mobility shift assays revealed that OBF4 binds to the promoter of the FLOWERING LOCUS T (FT) gene, a direct target of CO. We also found that, like CO and FT, an OBF4:GUS construct was prominently expressed in the vascular tissues of leaf, indicating that OBF4 can regulate FT expression through the formation of a protein complex with CO. Taken together, our results suggest that OBF4 may act as a link between defense responses and flowering.

Photoperiod sensing system for timing of flowering in plants

  • Lee, Byoung-Doo;Cha, Joon-Yung;Kim, Mi Ri;Paek, Nam-Chon;Kim, Woe-Yeon
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.163-164
    • /
    • 2018
  • CONSTANS (CO) induces the expression of FLOWERING LOCUS T (FT) in the photoperiodic pathway, and thereby regulates the seasonal timing of flowering. CO expression is induced and CO protein is stabilized by FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1) in the late afternoon, while CO is degraded by CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) during the night. These regulatory cascades were thought to act independently. In our study, we investigated the relationship between FKF1 and COP1 in the regulation of CO stability in response to ambient light conditions. A genetic analysis revealed that FKF1 acts as a direct upstream negative regulator of COP1, in which cop1 mutation is epistatic to fkf1 mutation in the photoperiodic regulation of flowering. COP1 activity requires the formation of a hetero-tetramer with SUPPRESSOR OF PHYA-105 (SPA1), [$(COP1)_2(SPA1)_2$]. Light-activated FKF1 has an increased binding capacity for COP1, forming a FKF1-COP1 hetero-dimer, and inhibiting COP1 homo-dimerization at its coiled-coil (CC) domain. Mutations in the CC domain result in poor COP1 dimerization and misregulation of photoperiodic floral induction. We propose that FKF1 represses COP1 activity by inhibiting COP1 dimerization in the late afternoon under long-day conditions, resulting in early flowering.

카로티노이드 $^1O_2$ 퀜칭효과

  • 박수남;이태영
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.10 no.1
    • /
    • pp.75-89
    • /
    • 1984
  • $^1O_2$ quenching abilities of several carotenoids which contain hydroxy, carbonyl and ester groups were compared quantitatively with $\beta$-carotene, and the capacity of the quenching was interpreted in the light of electronic effects. The rate constans of $^1O_2$ quenching of lutein diester and astaxanthin diester in MeOH solution were shown to be $1.9\times10^{10}M^{-1}Sec^{-1}$, $2.3\times10^{10}M^{-1}Sec^{-1}$ respectively. Under the experimental conditions, and within the carotenoid tested results, the larger the resonance energy is, the larger becomes the rate constant and consequently the lower the transition energy is, the better becomes the quencher.

  • PDF

Determination of Nucleophilic Reactivity by PMO Method (I) Kinetic Studies on the Chloride Exchange Reactions of Arylmethylchlorides in Dry Acetone (PMO 법에 의한 친핵반응도 결정 (I) Arylmethylchloride의 Chloride 교환반응)

  • Bon-su Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.281-287
    • /
    • 1969
  • Rate constans for the chloride exchange of some arylmethylchloride in dry acetone have been determined, and activation parameters have been evaluated. The reactivities of substates are explained with perturbational molecular orbital (PMO) method and HSAB principle. It was found that carbon-chlorine resonance integral at the transition state is a out 67% of ${\beta}$, the carbon-carbon resonance integral.

  • PDF

Synthesis of $\beta$-Alumina By Oxalate Coprecipitation Method and Its Crystallization Behavior (Oxalate 공침법에 의한 $\beta$-Alumina 합성과 결정화 거동)

  • 박용민;양유철;김형욱;박성수;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.455-461
    • /
    • 1995
  • To investigate the synthesis of $\beta$-Al2O3 and its crystallization behavior by oxalate coprecipitation method, the optimum pH range for oxalate coprecipitates has been theoretically calculated from the solubility products and the equilibrium constans of each metal ionic species and their solubility diagram wa obtained. The optimum pH range for oxalate coprecipitates at room temperature was estimated as <4. In experiment, we found that the optimum condition for oxalate coprecipitates was pH<1, which was not doped with pH controller. The Na+ ions were easily exchanged for the NH4+ ions of NH4OH which was used as pH controller, and those NH4+ ions were supposed to affect the crystallization behavior of $\beta$-Al2O3. The thermal decomposition of all complexes was almost complete below 40$0^{\circ}C$. The primary product of the decomposition process was m-Al2O3, which transformed to $\beta$"- or $\beta$-Al2O3 at temperature higher than 100$0^{\circ}C$. We found that the powder prepared at 120$0^{\circ}C$ had only $\beta$"- and $\beta$-Al2O3.EX>-Al2O3.

  • PDF

Design of Robust Adaptive Fuzzy Controller for Uncertain Nonlinear System Using Estimation of Bounding Constans and Dynamic Fuzzy Rule Insertion (유계상수 추정과 동적인 퍼지 규칙 삽입을 이용한 비선형 계통에 대한 강인한 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. In indirect adaptive fuzzy control, based on the proved approximation capability of fuzzy systems, they are used to capture the unknown nonlinearities of the plant. Until now, most of the papers in the field of controller design for nonlinear system considers the affine system using fuzzy systems which have fixed grid-rule structure. We proposes a dynamic fuzzy rule insertion scheme where fuzzy rule-base grows as time goes on. With this method, the dynamic order of the controller reduces dramatically and an appropriate number of fuzzy rules are found on-line. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed-loop system is guaranteed.

  • PDF

The Kinetic Analysis on Organic Substrate Removal and Nitrification in Anoxic-Anaerobic-Aerobic Process (무산소-혐기-호기법에서 유기기질제거와 질산화의 동역학적 해석)

  • Chae, Soo Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.689-696
    • /
    • 2007
  • Kinetic analysis was important to develope the biological nutrient removal process effectively. In this research, anoxic-anaerobic-aerobic system was operated to investigate kinetic behavior on the nutrient removal reaction. Nitrification and denitrification were important microbiological reactions of nitrogen. The kinetics of organic removal and nitrification reaction have been investigated based on a Monod-type expression involving two growth limiting substrates : TKN for nitrification and COD for organic removal reaction. The kinetic constans and yield coefficients were evaluated for both these reactions. Experiments were conducted to determine the biological kinetic coefficients and the removal efficiencies of COD and TKN at five different MLSS concentrations of 5000, 4200, 3300, 2600, and 1900 mg/L for synthetic wastewater. Mathematical equations were presented to permit complete evaluation of the this system. Kinetic behaviors for the organic removal and nitrification reaction were examined by the determined kinetic coefficient and the assumed operation condition and the predicted model formulae using kinetic approach. The conclusions derived from this experimental research were as follows : 1. Biological kinetic coefficients were Y=0.563, $k_d=0.054(day^{-1})$, $K_S=49.16(mg/L)$, $k=2.045(day^{-1})$ for the removal of COD and $Y_N=0.024$, $k_{dN}=0.0063(day^{-1})$, $K_{SN}=3.21(mg/L)$, $k_N=31.4(day^{-1})$ for the removal of TKN respectively. 2. The predicted kinetic model formulae could determine the predicted concentration of the activated sludge and nitrifier, investigate the distribution rate of input carbon and nitrogen in relation to the solid retention time (SRT).