DOI QR코드

DOI QR Code

GIGANTEA Regulates the Timing Stabilization of CONSTANS by Altering the Interaction between FKF1 and ZEITLUPE

  • Received : 2019.08.30
  • Accepted : 2019.09.26
  • Published : 2019.10.31

Abstract

Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In Arabidopsis, the diel and seasonal regulation of CONSTANS (CO) protein stability is crucial for the induction of FLOWERING LOCUS T (FT) gene in long days. FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL) proteins control the shape of CO expression profile antagonistically, although regulation mechanisms remain unknown. In this study, we show that GIGANTEA (GI) protein modulates the stability and nuclear function of FKF1, which is closely related to the stabilization of CO in the afternoon of long days. The abundance of FKF1 protein is decreased by the gi mutation, but increased by GI overexpression throughout the day. Unlike the previous report, the translocation of FKF1 to the nucleus was not prevented by ZTL overexpression. In addition, the FKF1-ZTL complex formation is higher in the nucleus than in the cytosol. GI interacts with ZTL in the nucleus, implicating the attenuation of ZTL activity by the GI binding and, in turn, the sequestration of FKF1 from ZTL in the nucleus. We also found that the CO-ZTL complex presents in the nucleus, and CO protein abundance is largely reduced in the afternoon by ZTL overexpression, indicating that ZTL promotes CO degradation by capturing FKF1 in the nucleus under these conditions. Collectively, our findings suggest that GI plays a pivotal role in CO stability for the precise control of flowering by coordinating balanced functional properties of FKF1 and ZTL.

Keywords

References

  1. Alon, U. (2007). Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450-461. https://doi.org/10.1038/nrg2102
  2. Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2, e106. https://doi.org/10.1371/journal.pgen.0020106
  3. Baudry, A., Ito, S., Song, Y.H., Strait, A.A., Kiba, T., Lu, S., Henriques, R., Pruneda-Paz, J.L., Chua, N.H., Tobin, E.M., et al. (2010). F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22, 606-622. https://doi.org/10.1105/tpc.109.072843
  4. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033. https://doi.org/10.1126/science.1141752
  5. Fornara, F., Panigrahi, K.C., Gissot, L., Sauerbrunn, N., Ruhl, M., Jarillo, J.A., and Coupland, G. (2009). Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell 17, 75-86. https://doi.org/10.1016/j.devcel.2009.06.015
  6. Fukamatsu, Y., Mitsui, S., Yasuhara, M., Tokioka, Y., Ihara, N., Fujita, S., and Kiyosue, T. (2005). Identification of LOV KELCH PROTEIN2 (LKP2)-interacting factors that can recruit LKP2 to nuclear bodies. Plant Cell Physiol. 46, 1340-1349. https://doi.org/10.1093/pcp/pci144
  7. Goralogia, G.S., Liu, T.K., Zhao, L., Panipinto, P.M., Groover, E.D., Bains, Y.S., and Imaizumi, T. (2017). CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. Plant J. 92, 244-262. https://doi.org/10.1111/tpj.13649
  8. Han, L., Mason, M., Risseeuw, E.P., Crosby, W.L., and Somers, D.E. (2004). Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing. Plant J. 40, 291-301. https://doi.org/10.1111/j.1365-313X.2004.02207.x
  9. Hayama, R., Sarid-Krebs, L., Richter, R., Fernandez, V., Jang, S., and Coupland, G. (2017). PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. EMBO J. 36, 904-918. https://doi.org/10.15252/embj.201693907
  10. Imaizumi, T., Schultz, T.F., Harmon, F.G., Ho, L.A., and Kay, S.A. (2005). FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309, 293-297. https://doi.org/10.1126/science.1110586
  11. Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R., and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306. https://doi.org/10.1038/nature02090
  12. Ito, S., Song, Y.H., and Imaizumi, T. (2012). LOV domain-containing F-Box proteins: light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5, 47-56.
  13. Jaeger, K.E. and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17, 1050-1054. https://doi.org/10.1016/j.cub.2007.05.008
  14. Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19, 2736-2748. https://doi.org/10.1105/tpc.107.054528
  15. Kim, J., Geng, R., Gallenstein, R.A., and Somers, D.E. (2013). The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140, 4060-4069. https://doi.org/10.1242/dev.096651
  16. Kim, W.Y., Fujiwara, S., Suh, S.S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., and Somers, D.E. (2007). ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356-360. https://doi.org/10.1038/nature06132
  17. Kim, W.Y., Hicks, K.A., and Somers, D.E. (2005). Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol. 139, 1557-1569. https://doi.org/10.1104/pp.105.067173
  18. Krahmer, J., Goralogia, G.S., Kubota, A., Zardilis, A., Johnson, R.S., Song, Y.H., MacCoss, M.J., Le Bihan, T., Halliday, K.J., Imaizumi, T., et al. (2019). Time-resolved interaction proteomics of the GIGANTEA protein under diurnal cycles in Arabidopsis. FEBS Lett. 593, 319-338. https://doi.org/10.1002/1873-3468.13311
  19. Lee, B.D., Kim, M.R., Kang, M.Y., Cha, J.Y., Han, S.H., Nawkar, G.M., Sakuraba, Y., Lee, S.Y., Imaizumi, T., McClung, C.R., et al. (2017). The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering. Nat. Commun. 8, 2259. https://doi.org/10.1038/s41467-017-02476-2
  20. Lee, C.M., Feke, A., Li, M.W., Adamchek, C., Webb, K., Pruneda-Paz, J., Bennett, E.J., Kay, S.A., and Gendron, J.M. (2018). Decoys untangle complicated redundancy and reveal targets of circadian clock F-Box proteins. Plant Physiol. 177, 1170-1186. https://doi.org/10.1104/pp.18.00331
  21. Mathieu, J., Warthmann, N., Kuttner, F., and Schmid, M. (2007). Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol. 17, 1055-1060. https://doi.org/10.1016/j.cub.2007.05.009
  22. Mishra, P. and Panigrahi, K.C. (2015). GIGANTEA: an emerging story. Front. Plant Sci. 6, 8. https://doi.org/10.3389/fpls.2015.00008
  23. Nakagawa, T., Nakamura, S., Tanaka, K., Kawamukai, M., Suzuki, T., Nakamura, K., Kimura, T., and Ishiguro, S. (2008). Development of R4 gateway binary vectors (R4pGWB) enabling high-throughput promoter swapping for plant research. Biosci. Biotechnol. Biochem. 72, 624-629. https://doi.org/10.1271/bbb.70678
  24. Pudasaini, A., Shim, J.S., Song, Y.H., Shi, H., Kiba, T., Somers, D.E., Imaizumi, T., and Zoltowski, B.D. (2017). Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis. Elife 6, e21646. https://doi.org/10.7554/eLife.21646
  25. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613-1616. https://doi.org/10.1126/science.288.5471.1613
  26. Sawa, M. and Kay, S.A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 108, 11698-11703. https://doi.org/10.1073/pnas.1106771108
  27. Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261-265. https://doi.org/10.1126/science.1146994
  28. Song, Y.H., Estrada, D.A., Johnson, R.S., Kim, S.K., Lee, S.Y., MacCoss, M.J., and Imaizumi, T. (2014). Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering. Proc. Natl. Acad. Sci. U. S. A. 111, 17672-17677. https://doi.org/10.1073/pnas.1415375111
  29. Song, Y.H., Ito, S., and Imaizumi, T. (2013). Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18, 575-583. https://doi.org/10.1016/j.tplants.2013.05.003
  30. Song, Y.H., Kubota, A., Kwon, M.S., Covington, M.F., Lee, N., Taagen, E.R., Laboy Cintron, D., Hwang, D.Y., Akiyama, R., Hodge, S.K., et al. (2018). Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat. Plants 4, 824-835. https://doi.org/10.1038/s41477-018-0253-3
  31. Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., and Imaizumi, T. (2015). Photoperiodic flowering: time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66, 441-464. https://doi.org/10.1146/annurev-arplant-043014-115555
  32. Song, Y.H., Smith, R.W., To, B.J., Millar, A.J., and Imaizumi, T. (2012). FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336, 1045-1049. https://doi.org/10.1126/science.1219644
  33. Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120. https://doi.org/10.1038/35074138
  34. Takase, T., Nishiyama, Y., Tanihigashi, H., Ogura, Y., Miyazaki, Y., Yamada, Y., and Kiyosue, T. (2011). LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J. 67, 608-621. https://doi.org/10.1111/j.1365-313X.2011.04618.x
  35. Tiwari, S.B., Shen, Y., Chang, H.C., Hou, Y., Harris, A., Ma, S.F., McPartland, M., Hymus, G.J., Adam, L., Marion, C., et al. (2010). The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 187, 57-66. https://doi.org/10.1111/j.1469-8137.2010.03251.x
  36. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006. https://doi.org/10.1126/science.1091761

Cited by

  1. Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes vol.43, pp.6, 2020, https://doi.org/10.14348/molcells.2020.0077
  2. FKF1 F‐box protein promotes flowering in part by negatively regulating DELLA protein stability under long‐day photoperiod in Arabidopsis vol.62, pp.11, 2020, https://doi.org/10.1111/jipb.12971
  3. B-box transcription factor 28 regulates flowering by interacting with constans vol.10, pp.1, 2019, https://doi.org/10.1038/s41598-020-74445-7
  4. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations vol.15, 2019, https://doi.org/10.3389/fnins.2021.613120
  5. Screening of Key Proteins Affecting Floral Initiation of Saffron Under Cold Stress Using iTRAQ-Based Proteomics vol.12, 2019, https://doi.org/10.3389/fpls.2021.644934
  6. Characterization of the FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 Homolog SlFKF1 in Tomato as a Model for Plants with Fleshy Fruit vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22041735
  7. Coordinative regulation of plants growth and development by light and circadian clock vol.2, pp.2, 2021, https://doi.org/10.1007/s42994-021-00041-6
  8. Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana vol.22, pp.11, 2019, https://doi.org/10.3390/ijms22115716
  9. Identification and expression profiling of genes involved in circadian clock regulation in red dragon fruit (Hylocereus polyrhizus) by full-length transcriptome sequencing vol.16, pp.6, 2019, https://doi.org/10.1080/15592324.2021.1907054
  10. Genome wide association analyses to understand genetic basis of flowering and plant height under three levels of nitrogen application in Brassica juncea (L.) Czern & Coss vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-83689-w