• Title/Summary/Keyword: Technology Transfer Agreement

Search Result 204, Processing Time 0.032 seconds

Design and implementation of file transfer protocol supporting security functionalities (보안 기능을 지원하는 파일 전송 프로토콜의 설계 및 구현)

  • Ahn, Jae-Won;Choi, Beom-Jin;Ok, Sung-Jin;Kang, Jung-Ha;Kim, Jae-Young;Kim, Eun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3086-3092
    • /
    • 2014
  • The FTP that provides file transfer capabilities to/from another station cannot provides data confidentialities. The FTPS and SFTP can support a security functionalities. The FTPS needs a SSL layer and SFTP use a functions of SSH. And therefore the FTPS or SFTP needs an additional modules such as SSL or SSH. In this paper, we propose a new Secured FTP protocol that can support the security functions without extra security system. The Secured FTP uses Diffie-Hellman key agreement algorithm for shared secret key generation and AES-Counter algorithm for data encryption algorithm. Our designed Secured FTP is implemented in Linux environments and the proper operations of implemented Secured FTP is verified.

Numerical Study of Mixed Convection Nanofluid in Horizontal Tube (수평원형관내 나노유체의 혼합대류에 관한 수치적 연구)

  • Choi, Hoon-Ki;Lim, Yun-Seung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.155-163
    • /
    • 2019
  • Laminar mixed convection of a nanofluid consists of water and $Al_2O_3$ in a horizontal circular tube has been studied numerically. Two-phase mixture model has been used to investigate hydrodynamic and thermal behaviors of the nanofluid with variables physical properties. Three dimensional Navier-Stokes, energy and volume fraction equations have been discretized using the finite volume method. The Brownian motions of nanoparticles have been considered to determine the thermal conductivity and dynamic viscosity of $Al_2O_3$-Water nanofluid, which depend on temperature. The calculated results show good agreement with the previous numerical data. Results show that in a given Reynolds number (Re), increasing solid nanoparticles volume fraction and Richardson number (Ri) increases the convective heat transfer coefficient and wall shear stress.

An Experiment of Natural Circulated Air Flow and Heat Transfer in the Passive Containment Cooling System (격납용기 피동냉각계통내 자연순환 공기유량 및 열전달 실험연구)

  • Ryu, S.H.;Oh, S.M.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.516-525
    • /
    • 1994
  • Since the TMI and Chernobyl accidents, many passive safety features are suggested in advanced reactors in order to enhance the safety in future nuclear power plants. In order to verify the effectiveness and provide the data for detailed design of passive cooling system, in the present work, the effects of air inlet position and external condition on the natural circulated air flow rate and the natural and forced convective heat transfer coefficient have been investigated for the one-side heated closed path such as the passive containment cooling system of the Westinghouse's AP-600. A series of experiments have been peformed with the 1/26th scaled segment type test facility of the AP-600 passive containment. Under natural and forced convection, the air velocities and temperatures are measured at several points of the air flow path. The experimental result are compared with a simple one-dimensional model and it shows a good agreement.

  • PDF

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

Optimum Design of Vaporizer Fin with Liquefied Natural Gas by Numerical Analysis

  • Jeong Hyo-Min;Chung Han-Shik;Lee Sang-Chul;Kong Tae-Woo;Yi Chung-Seub
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.545-553
    • /
    • 2006
  • Generally, the temperature drop under $0^{\circ}C$ on vaporizer surface creates frozen dews. This problem seems to increase as the time progress and humidity rises. In addition, the frozen dews create frost deposition. Consequently, heat transfer on vaporizer decreases because frost deposition causes adiabatic condition. Therefore, it is very important to solve this problem. This paper aims to study of the optimum design of used vaporizer at local LNG station. In this paper, experimental results were compared with numerical results. Geometries of numerical and experimental vaporizers were identical. Studied parameters of vaporizer are angle between two fins $(\Phi)$ and fin thickness $(TH_F)$. Numerical analysis results were presented through the correlations between the ice layer thickness $(TH_{ICE})$ on the vaporizer surface to the temperature distribution of inside vaporizer $(T_{IN})$, fin thickness $(TH_F)$, and angle between two fins $(\Phi)$. Numerical result shows good agreement with experimental outcome. Finally, the correlations for optimum design of vaporizer are proposed on this paper.

Numerical Method for Exposure Assessment of Wireless Power Transmission under Low-Frequency Band

  • Kim, Minhyuk;Park, SangWook;Jung, Hyun-Kyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.442-449
    • /
    • 2016
  • In this paper, an effective numerical analysis method is proposed for calculating dosimetry of the wireless power transfer system operating low-frequency ranges. The finite-difference time-domain (FDTD) method is widely used to analyze bio-electromagnetic field problems, which require high resolution, such as a heterogeneous whole-body voxel human model. However, applying the standard method in the low-frequency band incurs an inordinate number of time steps. We overcome this problem by proposing a modified finite-difference time-domain method which utilizes a quasi-static approximation with the surface equivalence theorem. The analysis results of the simple model by using proposed method are in good agreement with those from a commercial electromagnetic simulator. A simulation of the induced electric fields in a human head voxel model exposed to a wireless power transmission system provides a realistic example of an application of the proposed method. The simulation results of the realistic human model with the proposed method are verified by comparing it with the conventional FDTD method.

Direct forcing/fictitious domain-Level set method for two-phase flow-structure interaction (이상 유동에서의 유체-구조 연성해석을 위한 Direct Forcing/Ficititious Domain-Level Set Method)

  • Jeon, Chung-Ho;Yoon, Hyun-Sik;Jung, Jae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.36-41
    • /
    • 2011
  • In the present paper, a direct forcing/fictitious domain (DF/FD) level set method is proposed to simulate the FSI (fluid-solid interaction) in two-phase flow. The main idea is to combine the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. The DF/FD method is a non-Lagrange-multiplier version of a distributed Lagrange multiplier/fictitious domain (DLM/FD) method. This method does not sacrifice the accuracy and robustness by employing a discrete ${\delta}$ (Dirac delta) function to transfer quantities between the Eulerian nodes and Lagrangian points explicitly as the immersed boundary method. The advantages of this approach are the simple concept, easy implementation, and utilization of the original governing equation without modification. Simulations of various water-entry problems have been conducted to validate the capability and accuracy of the present method in solving the FSI in two-phase flow. Consequently, the present results are found to be in good agreement with those of previous studies.

An Estimation Technology of Temperature Rise in DSES using Three-Dimensional Coupled-Field Multiphysics (연성해석을 이용한 초고압 DSES 온도상승예측)

  • Yoon, Jeong-Hoon;Ahn, Heui-Sub;Choi, Jong-Ung;Park, Seok-Weon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.847_848
    • /
    • 2009
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule‘s losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in GIS..

  • PDF

Influence of an Aspect Ratio of Rectangular Channel on the Cooling Performance of a Multichip Module

  • Choi, Min-Goo;Cho, Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.350-357
    • /
    • 2000
  • Experiments were performed by using PF-5060 and water to investigate the influence of an aspect ratio of a horizontal rectangular channel on the cooling characteristics from an in-line $6{\times}1$ array of discrete heat sources which were flush mounted on the top wall of the channel. The experimental parameters were aspect ratio of rectangular channel, heat flux of simulated VLSI chip, and channel Reynolds number. The chip surface temperatures decreased with the aspect ratio at the first and sixth rows, and decreased more rapidly at a high heat flux than at a low heat flux. The measured friction factors at each aspect ratio for both water and PF-5060 gave a good agreement with the values predicted by the modified Blasius equation within ${\pm}7%$. The Nusselt number increased as the aspect ratio decreased, but the increasing rate of Nusselt number reduced as the aspect ratio decreased. A 5:1 rectangular channel yields the most efficient cooling performance when the heat transfer and pressure drop in the test section were considered simultaneously.

  • PDF

A Study on the Influence of Personal Characteristics of Youth Employment on the Preparation for Turnover: Focused on the adjustment effect of experience in failing to get jobs

  • KIM, Jong-Jin;UM, Kyung-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.7
    • /
    • pp.19-28
    • /
    • 2020
  • Purpose: In this study, we would like to confirm that the transfer of young workers may be a means of enhancing their internal satisfaction, not to get a better job, by setting work-related characteristics that are highly relevant to job-related factors. Research design, data, and methodology: In this study, preparation for turnover was set as dependent variables to identify factors related to the turnover of young people, and the type of business, employment type, debt status, job satisfaction, job difficulty compared to education level, job difficulty, job degree, job major agreement, debt status, and other demographic social characteristics were selected as independent variables. Results: The characteristics related to personal criteria in job-seeking process were significant in the form of business, employment type, job satisfaction, work difficulty compared to the level of education, work difficulty compared to the level of technology, job major matching, and debt status. Conclusions: This study confirmed that young people's turnover may not simply be a means to get a better job, but to increase satisfaction in the internal aspects of their jobs, and that for young people, a job is an important development process that represents their identity and needs to be approached from a life-cycle perspective.