• Title/Summary/Keyword: Technology Acquisition

Search Result 1,937, Processing Time 0.026 seconds

Semi-automated Tractography Analysis using a Allen Mouse Brain Atlas : Comparing DTI Acquisition between NEX and SNR (알렌 마우스 브레인 아틀라스를 이용한 반자동 신경섬유지도 분석 : 여기수와 신호대잡음비간의 DTI 획득 비교)

  • Im, Sang-Jin;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • Advancements in segmentation methodology has made automatic segmentation of brain structures using structural images accurate and consistent. One method of automatic segmentation, which involves registering atlas information from template space to subject space, requires a high quality atlas with accurate boundaries for consistent segmentation. The Allen Mouse Brain Atlas, which has been widely accepted as a high quality reference of the mouse brain, has been used in various segmentations and can provide accurate coordinates and boundaries of mouse brain structures for tractography. Through probabilistic tractography, diffusion tensor images can be used to map comprehensive neuronal network of white matter pathways of the brain. Comparisons between neural networks of mouse and human brains showed that various clinical tests on mouse models were able to simulate disease pathology of human brains, increasing the importance of clinical mouse brain studies. However, differences between brain size of human and mouse brain has made it difficult to achieve the necessary image quality for analysis and the conditions for sufficient image quality such as a long scan time makes using live samples unrealistic. In order to secure a mouse brain image with a sufficient scan time, an Ex-vivo experiment of a mouse brain was conducted for this study. Using FSL, a tool for analyzing tensor images, we proposed a semi-automated segmentation and tractography analysis pipeline of the mouse brain and applied it to various mouse models. Also, in order to determine the useful signal-to-noise ratio of the diffusion tensor image acquired for the tractography analysis, images with various excitation numbers were compared.

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF

The Evaluation of Usefulness of Wide Beam Reconstruction Method on Segmental Perfusion and Regional Wall Motion in Myocardial Perfusion SPECT (심근관류 SPECT의 분절별 관류 및 국소벽 운동에서 Wide Beam Reconstruction기법의 유용성 평가)

  • Seong, Yong-Joon;Kim, Tae-Yeob;Moon, Il-Sang;Cho, Seong-Wook;Woo, Jae-Ryong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Purpose: The aim of this study is to identify clinical usefulness of Wide Beam Reconstruction (WBR) which is called Xpress.cardiac$^{TM}$ to confirm the agreement between segmental perfusion and regional wall motion in myocardium compared to conventional OSEM method. Materials and Methods: Subjects were separated two groups. First group was composed of 20 normal control group. Second group was composed of 10 patients (abnormal group) who had coronary artery disease. Subjects underwent myocardial perfusion SPECT ($^{201}Tl$ rest and $^{99m}Tc$-MIBI stress). Image acquisition and reconstruction were that rest stage was each step per 30, 15 seconds and stress stage was each step per 25, 13 seconds, OSEM and WBR methods were applied. Segmental perfusion and regional wall motion were applied 20-segment model of QPS, QGS algorithm in AutoQuant. Status of perfusion was composed of 5 point scoring system (0=normal, 1=mild, 2=moderate, 3=severe hypokinesia, 4=dyskinesia). Status of regional wall motion was also composed of 5 point scoring (0=normal, 1=mild, 2=moderate, 3=severe hypokinesia, 4=dyskinesia). We evaluated the agreement between conventional OSEM and WBR through automatic quantification value. Results: The agreement of rest segmental perfusion between conventional OSEM and WBR in normal patients was 99% (396/400, k=0.662, p<0.0001) and one of rest regional wall motion was 83.8% (335/400, k=0.283), the agreement of stress segmental perfusion was 95.8%(383/400, k=0.656), one of stress regional wall motion was 87.3% (349/400, k=0.390). The match rate of rest segmental perfusion in abnormal patients was 83% (166/200, k=0.605, p<0.0001) and one of rest regional wall motion was 55.5% (111/200, k=0.385), the agreement of stress segmental perfusion was 79.5% (159/200, k=0.682), one of stress regional wall motion was 63.5% (127/200, k=0.486). Conclusion: Compared to conventional OSEM, WBR method had a good agreement of segmental perfusion in myocardium in normal and abnormal groups. However regional wall motion showed meaningful low agreement. Although WBR offers high resolution and contrast ratio, it is not useful method for gated myocardial perfusion SPECT.

  • PDF

Assessment and Comparison of SUVs of Three Different PET/CT Scanners (장비에 따른 SUV의 차이와 이에 관한 고찰)

  • Kim, Tae-Yeob;Lim, Jung-Jin;Lee, Hong-Jae;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • Purpose: The SUV is a widely used semi-quantitative index in PET for the estimation of radio-tracer accumulation in VOI. In this study, SUVs from three different PET/CT scanners were assessed, and differences between SUVs were evaluated. Materials and Methods: The PET/CT scanners which were assessed in this study were GEMINI, GEMINI TF 64 (Philips) and Biograph True Point True V 40 (Siemens). The NEMA PET phantom (Data Spectrum Corp., USA) was used to evaluate SUVs. The NEMA PET phantom has6.8 kg weight and three hot inserts. Two different activity distributions for the background and inserts were tested. The activity ratio were 3.7:3.7:7.4:11.1 MBq (1:1:2:3) and 1.85:7.4:9.25:11.1MBq (1:4:5:6) for each of background, insert 1, insert 2 and insert 3. Acquisition time was 2 minutes per bed position and NEMA PET phantom could be covered by two bed positions for all PET/CT scanners. The SUVs from each PET/CT scanner were compared with calculated true value. Results: For both activity ratios, all scanners showed similar results. The differences between each scanner were insignificant. Each scanner showed 91.2%, 85.9% and 87.2% of true SUV for GEMINI, GEMINI TF 64, Biograph True Point TrueV, respectively. Conclusion: For all scanners, SUVs were slightly lower than true value. However, the difference between scanners was insignificant. The SUVs from these scanners would be clinically meaningful if their consistent underestimation is kept in mind.

  • PDF

Usefulness in Evaluation of NM Image which It Follows in Onco. Flash Processing Application (Onco. Flash Processing 적용에 따른 핵의학 영상의 유용성 평가)

  • Kim, Jung-Soo;Kim, Byung-Jin;Kim, Jin-Eui;Woo, Jae-Ryong;Kim, Hyun-Joo;Shin, Heui-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Purpose: The image processing method due to the algorism which is various portion nuclear medical image decision is important it makes holds. The purpose of this study is it applies hereupon new image processing method SIEMENS (made by Pixon co.) Onco. flash processing reconstruction and the comparison which use the image control technique of existing the clinical usefulness it analyzes with it evaluates. Materials & Methods: 1. Whole body bone scan-scan speed 20 cm/min, 30 cm/min & 40 cm/min blinding test 2. Bone static spot scan-regional view 200 kcts, 400 kcts for chest, pelvis, foot blinding test 3. 4 quadrant-bar phantom-20000 kcts visual evaluation 4. LSF-FWHM resolution comparison ananysis. Results: 1. Raw data (20 cm/min) & processing data (30 cm/min)-similar level image quality 2. Low count static image-image quality clearly improved at visual evaluation result. 3. Visual evaluation by quadrant bar phantom-rising image quality level 4. Resolution comparison evaluation (FWHM)-same difference from resolution comparison evaluation Conclusion: The study which applies a new method Onco. flash processing reconstruction, it will be able to confirm the image quality improvement which until high level is clearer the case which applies the method of existing better than. The new reconstruction improves the resolution & reduces the noise. This enhances the diagnostic capabilities of such imagery for radiologists and physicians and allows a reduction in radiation dosage for the same image quality. Like this fact, rising of equipment availability & shortening the patient waiting move & from viewpoint of the active defense against radiation currently becomes feed with the fact that it will be the useful result propriety which is sufficient in clinical NM.

  • PDF

Comparison of Collimator Choice on Image Quality of I-131 in SPECT/CT (I-131 SPECT/CT 검사의 에서 조준기 종류에 따른 영상 비교 평가)

  • Kim, Jung Yul;Kim, Joo Yeon;Nam-Koong, Hyuk;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • Purpose: I-131 scan using High Energy (HE) collimator is generally used. While, Medium Energy (ME) collimator is not suggested to use in result of an excessive septal penetration effects, it is used to improve the sensitivities of count rate on lower dose of I-131. This research aims to evaluate I-131 SPECT/CT image quality using by HE and ME collimator and also find out the possibility of ME collimator clinical application. Materials and Methods: ME and HE collimator are substituted as Siemens symbia T16 SPECT/CT, using I-131 point source and NEMA NU-2 IQ phantom. Single Energy Window (SEW) and Triple Energy Windows (TEW) are applied for image acquisition and images with CTAC and Scatter correction application or not, applied different number of iteration and sub set are reconstructed by IR method, flash 3D. By analysis of acquired image, the comparison on sensitivities, contrast, noise and aspect ratio of two collimators are able to be evaluated. Results: ME Collimator is ahead of HE collimator in terms of sensitivity (ME collimator: 188.18 cps/MBq, HE collimator: 46.31 cps/MBq). For contrast, reconstruction image used by HE collimator with TEW, 16 subset 8 iteration applied CTAC is shown the highest contrast (TCQI=190.64). In same condition, ME collimator has lower contrast than HE collimator (TCQI=66.05). The lowest aspect ratio for ME collimator and HE collimator are 1.065 with SEW, CTAC (+) and 1.024 with TEW, CTAC (+) respectively. Conclusion: Selecting a proper collimator is important factor for image quality. This research finding tells that HE collimator, which is generally used for I-131 scan emitted high energy ${\gamma}$-ray is the most recommendable collimator for image quality. However, ME collimator is also applicable in condition of lower dose, lower sensitive if utilizing energy window, matrix size, IR parameter, CTAC and scatter correction appropriately.

  • PDF

Efficient of Hepatobiliary Scintigraphy both Decubitus Position in Biliary Leakage Patients (간담도 스캔 시 담즙 누출(Biliary Leakage)환자에서의 양측와위 자세(Both Decubitus Position)의 유용성)

  • Bahn, Young-Kag;Roh, Dong-Ook;Kang, Chun-Koo;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.229-234
    • /
    • 2008
  • Hepatobiliary scintigraphy is very sensitivity of hepatic cell and gallbladder, biliary track atresia and biliary leakage. however, Hepatobiliary scan of biliary leakage diagnosis was separated determine biliary leakage and bowl drainage bile-juice. The object of this study will determine biliary leakage and bowl drainage bile-juice to hepatobiliary scintigraphy both decubitus position in bile leakage patients. Material & Methode: 31 patients (meal 14, Femeal 17), $51.1{\pm}14.4$ years. dynamic scan acquisition 60 farme for 60 minute on supine position. and delay scan was 2 hrs, 4 hrs, 24 hrs for 5 minute on supine, both decubitus position. Both decubitus position scan was kept for 5 minutes. Efficient of Hepatobiliary Scintigraphy both decubitus position in bile leakage patients was compared leakage size, density, image of supine position and both decubitus position. Results: 23 patients for 31 bile leakage patients was checked up function image or delay image, and 8 patients was checked up bile leakage on both decubitus. anatomical leakage location was supine position very well, but both decubitus position was separated bile leakage and moving bile-juice in bowl. also, uptake (counts/pixel) average of roi and bkg was supine 5.02, left decubitus 2.08, right decubitus 2.68. No. pixels of supine ROI counted 1.91 times than left decubitus, 1.05 times than right decubitus. Conclusion: 31 patient both decubitus position, but decubitus position was separated bile juice movement in bowl leakage location. also, It was compared ROI/BKG ratio and ROI No. pixels of supine, both decubitus in 38.5% patients. And No. pixels of supine position was large 19%, 5% than left decubitus, right decubitus, And density was in low 60%, 50% than left decubitus, right decubitus. It was mean bile leakage of ROI. so, If Hepatobiliary Scintigraphy was additional both decubitus position scan in bile leakage patients, this study will be more valuable in diagnosis of bile leakage.

  • PDF

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Suppression of Radar Clutter by CFAR - (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 - CFAR에 의한 레이더 잡음 억제 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.347-357
    • /
    • 2003
  • This paper describes on the suppression of sea clutter on marine radar display using a cell-averaging CFAR(constant false alarm rate) technique, and on the analysis of radar echo signal data in relation to the estimation of ARPA functions and the detection of the shadow effect in clutter returns. The echo signal was measured using a X -band radar, that is located on the Pukyong National University, with a horizontal beamwidth of $$3.9^{\circ}$$, a vertical beamwidth of $20^{\circ}$, pulsewidth of $0.8 {\mu}s$ and a transmitted peak power of 4 ㎾ The suppression performance of sea clutter was investigated for the probability of false alarm between $l0-^0.25;and; 10^-1.0$. Also the performance of cell averaging CFAR was compared with that of ideal fixed threshold. The motion vectors and trajectory of ships was extracted and the shadow effect in clutter returns was analyzed. The results obtained are summarized as follows;1. The ARPA plotting results and motion vectors for acquired targets extracted by analyzing the echo signal data were displayed on the PC based radar system and the continuous trajectory of ships was tracked in real time. 2. To suppress the sea clutter under noisy environment, a cell averaging CFAR processor having total CFAR window of 47 samples(20+20 reference cells, 3+3 guard cells and the cell under test) was designed. On a particular data set acquired at Suyong Man, Busan, Korea, when the probability of false alarm applied to the designed cell averaging CFAR processor was 10$^{-0}$.75/ the suppression performance of radar clutter was significantly improved. The results obtained suggest that the designed cell averaging CFAR processor was very effective in uniform clutter environments. 3. It is concluded that the cell averaging CF AR may be able to give a considerable improvement in suppression performance of uniform sea clutter compared to the ideal fixed threshold. 4. The effective height of target, that was estimated by analyzing the shadow effect in clutter returns for a number of range bins behind the target as seen from the radar antenna, was approximately 1.2 m and the information for this height can be used to extract the shape parameter of tracked target..

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

An Optimization Method of Measuring Heart Position in Dynamic Myocardial Perfusion SPECT with a CZT-based camera (동적 심근관류 SPECT에서 심장의 위치 측정방법에 대한 고찰)

  • Seong, Ji Hye;Lee, Dong Hun;Kim, Eun Hye;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.75-79
    • /
    • 2019
  • Purpose Cadmium-zinc-telluride (CZT) camera with semiconductor detector is capable of dynamic myocardial perfusion SPECT for coronary flow reserve (CFR). Image acquisition with the heart positioned within 2 cm in the center of the quality field of view (QFOV) is recommended because the CZT detector based on focused multi-pinhole collimators and is stationary gantry without rotation. The aim of this study was to investigate the optimal method for measuring position of the heart within the center of the QFOV when performing dynamic myocardial perfusion SPECT with the Discovery NM 530c camera. Materials and Methods From June to September 2018, 45 patients were subject to dynamic myocardial perfusion SPECT with D530c. For accurate heart positioning, the patient's heart was scanned with a mobile ultrasound and marked at the top of the probe where the mitral valve (MV) was visible in the parasternal long-axis view (PLAX). And, the marked point on the patient's body matched with the reference point indicated CZT detector in dynamic stress. The heart was positioned to be in the center of the QFOV in rest. The coordinates of dynamic stress and rest were compared statistically. Results The coordinates of the dynamic stress using mobile ultrasound and those taken of the rest were recorded for comparative analysis with regard to the position of the couch and analyzed. There were no statistically significant differences in the coordinates of Table in & out, Table up & down, and Detector in & out (P > 0.05). The difference in distance between the 2 groups was measured at $0.25{\pm}1.00$, $0.24{\pm}0.96$ and $0.25{\pm}0.82cm$ respectively, with no difference greater than 2 cm in all categories. Conclusion The position of the heart taken using mobile ultrasound did not differ significantly from that of the center of the QFOV. Therefore, The use of mobile ultrasound in dynamic stress will help to select the correct position of the heart, which will be effective in clinical diagnosis by minimizing the image quality improvement and the patient's exposure to radiation.