• Title/Summary/Keyword: Taylor approximation

Search Result 95, Processing Time 0.021 seconds

Blind Source Separation of Instantaneous Mixture of Delayed Sources Using High-Order Taylor Approximation

  • Zhao, Wei;Yuan, Zhigang;Shen, Yuehong;Cao, Yufan;Wei, Yimin;Xu, Pengcheng;Jian, Wei
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.727-735
    • /
    • 2015
  • This paper deals with the problem of blind source separation (BSS), where observed signals are a mixture of delayed sources. In reference to a previous work, when the delay time is small such that the first-order Taylor approximation holds, delayed observations are transformed into an instantaneous mixture of original sources and their derivatives, for which an extended second-order blind identification (SOBI) approach is used to recover sources. Inspired by the results of this previous work, we propose to generalize its first-order Taylor approximation to suit higher-order approximations in the case of a large delay time based on a similar version of its extended SOBI. Compared to SOBI and its extended version for a first-order Taylor approximation, our method is more efficient in terms of separation quality when the delay time is large. Simulation results verify the performance of our approach under different time delays and signal-to-noise ratio conditions, respectively.

Sliding Mode Controller Design Considering Weight (가중치를 고려한 슬라이딩 모드 제어기 설계)

  • 임동균;서병설
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.223-230
    • /
    • 1999
  • A conventional sliding mode control approach is often impractical or difficult when it is applied to high order process b because the number of tuning parameters in the sliding mode controller increases with the order of the plant. C Camacho(l996) proposed a design method of a fixed structure sliding mode controller based on a first order plus dead t time approximation to the higher-order process. But, his method has such problems as chattering, over‘shoot, and c command following due to the Taylor the approximation en‘ors for the time delay term of the first order model. In this p paper, a new design technique for a sliding mode controller based on the modified Taylor approximation considered a w weight is developed to improve the Camacho's problems.

  • PDF

Sliding Mode Controller Design Considering Weight (가중치를 고려한 슬라이딩 모드 제어기 설계)

  • 임동균;서병설
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.73-77
    • /
    • 1998
  • The conventional sliding mode controller (SMCr) approach is often impractical or difficult when applied to high order process because the number of tuning parameters in the SMCr increases with the order of the plant. Camacho(1996) proposed the design of a fixed structure sliding mode controller based on a first order plus dead time approximation to the higher-order process. But, there are such problems as overshoot, settling time and command following. They are mainly due to the approximation errors of the time delay term by Taylor series. In this paper, in order to improve Camcho's method, a new Taylor approximation technique considering a weight is proposed.

  • PDF

Exchange Rate Pass-through, Nominal Wage Rigidities, and Monetary Policy in a Small Open Economy

  • Rhee, Hyuk-Jae;Song, Jeongseok
    • East Asian Economic Review
    • /
    • v.22 no.3
    • /
    • pp.337-370
    • /
    • 2018
  • This paper discusses the design of monetary policy in a New Keynesian small open economy framework by introducing nominal wage rigidities and incomplete exchange rate pass-through on import prices. Three main findings are summarized. First, with the existence of an incomplete exchange rate pass-through and nominal wage rigidities, the optimal policy is to seek to minimize the output gap, the variance of domestic price and wage inflation, as well as deviations from the law of one price. Second, the CPI inflation targeting Taylor rule is welfare enhancing when there is a technological shock to the economy. The exception occurs when there is a foreign income shock, which minimizes welfare losses under the domestic inflation targeting Taylor rule. Last, two stylized Taylor rules turn out to be a bad approximation, but the modified Taylor rules that respond to the unemployment gap rather than the output gap are a closer approximation to the optimal policy.

Approximation of a Warship Passive Sonar Signal Using Taylor Expansion (테일러 전개를 이용한 함정 수동 소나 신호 근사)

  • Hong, Wooyoung;Jung, Youngcheol;Lim, Jun-Seok;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.232-237
    • /
    • 2014
  • A passive sonar of warship is composed of several directional or omni-directional sensors. In order to model the acoustic signal received into a warship sonar, the wave propagation modeling is usually required from arbitrary noise source to all sensors equipped to the sonar. However, the full calculation for all sensors is time-consuming and the performance of sonar simulator deteriorates. In this study, we suggest an asymptotic method to estimate the sonar signal arrived to sensors adjacent to the reference sensor, where it is assumed that all information of eigenrays is known. This method is developed using Taylor series for the time delay of eigenray and similar to Fraunhofer and Fresnel approximation for sonar aperture. To validate the proposed method, some numerical experiments are performed for the passive sonar. The approximation when the second-order term is kept is vastly superior. In addition, the error criterion for each approximation is provided with a practical example.

Performance Comparison of Taylor Series Approximation and CORDIC Algorithm for an Open-Loop Polar Transmitter (Open-Loop Polar Transmitter에 적용 가능한 테일러 급수 근사식과 CORDIC 기법 성능 비교 및 평가)

  • Kim, Sun-Ho;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.1-8
    • /
    • 2010
  • A digital phase wrapping modulation (DPM) open-loop polar transmitter can be efficiently applied to a wideband orthogonal frequency division multiplexing (OFDM) communication system by converting in-phase and quadrature signals to envelope and phase signals and then employing the signal mapping process. This mapping process is very similar to quantization in a general communication system, and when taking into account the error that appears during mapping process, one can replace the coordinates rotation digital computer (CORDIC) algorithm in the coordinate conversion part with the Taylor series approximation method. In this paper, we investigate the application of the Taylor series approximation to the cartesian to polar coordinate conversion part of a DPM polar transmitter for wideband OFDM systems. The conventional approach relies on the CORDIC algorithm. To achieve efficient application, we perform computer simulation to measure mean square error (MSE) of the both approaches and find the minimum approximation order for the Taylor series approximation compatible to allowable error of the CORDIC algorithm in terms of hardware design. Furthermore, comparing the processing speeds of the both approaches in the implementation with FPGA reveals that the Taylor series approximation with lower order improves the processing speed in the coordinate conversion part.

Power System Stabilizer Using Taylor Model (Taylor 모델을 사용한 전력계통의 안정화)

  • 김호찬;김세호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.111-117
    • /
    • 2003
  • The Taylor model concept is introduced to design a controller with input and output data only. The parameters in Taylor model can be estimated using the input and output data and a controller can be designed based on Taylor model. The accuracy of Taylor model approximation can be improved by increasing the observation window and the order of Taylor model. The LQR method is applied to Taylor model to design power system stabilizers (PSS), and compared with the conventional PSS.

Numerical Solutions of Fractional Differential Equations with Variable Coefficients by Taylor Basis Functions

  • Kammanee, Athassawat
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.383-393
    • /
    • 2021
  • In this paper, numerical techniques are presented for solving initial value problems of fractional differential equations with variable coefficients. The method is derived by applying a Taylor vector approximation. Moreover, the operational matrix of fractional integration of a Taylor vector is provided in order to transform the continuous equations into a system of algebraic equations. Furthermore, numerical examples demonstrate that this method is applicable and accurate.

Implementation of Efficient Exponential Function Approximation Algorithm Using Format Converter Based on Floating Point Operation in FPGA (부동소수점 기반의 포맷 컨버터를 이용한 효율적인 지수 함수 근사화 알고리즘의 FPGA 구현)

  • Kim, Jeong-Seob;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1137-1143
    • /
    • 2009
  • This paper presents the FPGA implementation of efficient algorithms for approximating exponential function based on floating point format data. The Taylor-Maclaurin expansion as a conventional approximation method becomes inefficient since high order expansion is required for the large number to satisfy the approximation error. A format converter is designed to convert fixed data format to floating data format, and then the real number is separated into two fields, an integer field and an exponent field to separately perform mathematic operations. A new assembly command is designed and added to previously developed command set to refer the math table. To test the proposed algorithm, assembly program has been developed. The program is downloaded into the Altera DSP KIT W/STRATIX II EP2S180N Board. Performances of the proposed method are compared with those of the Taylor-Maclaurin expansion.