• Title/Summary/Keyword: Task space

Search Result 603, Processing Time 0.029 seconds

Robust Nonlinear Control of a 6 DOF Parallel Manipulator : Task Space Approach

  • Kim, Hag-Seong;Youngbo Shim;Cho, Young-Man;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1053-1063
    • /
    • 2002
  • This paper presents a robust nonlinear controller for a f degree of freedom (DOF) parallel manipulator in the task space coordinates. The proposed control strategy requires information on orientations and translations in the task space unlike the joint space or link space control scheme. Although a 6 DOF sensor may provide such information in a straightforward manner, its cost calls for a more economical alternative. A novel indirect method based on the readily available length information engages as a potential candidate to replace a 6 DOF sensor. The indirect approach generates the necessary information by solving the forward kinematics and subsequently applying alpha-beta-gamma tracker With the 6 DOF signals available, a robust nonlinear task space control (RNTC) scheme is proposed based on the Lyapunov redesign method, whose stability is rigorously proved. The performance of the proposed RNTC with the new estimation scheme is evaluated via experiments. First, the results of the estimator are compared with the rate-gyro signals, which indicates excellent agreement. Then, the RNTC with on-line estimated 6 DOF data is shown to achieve excellent control performance to sinusoidal inputs, which is superior to those of a commonly used proportional-plus-integral-plus-derivative controller with a feedforward friction compensation under joint space coordinates and the nonlinear controller under task space coordinates.

A Study on Setting of Mathematical modelling Task Space and Rating Scheme in its Complexity (수학적 모델링의 과제공간에서 과제복잡성의 평가척도(rating scheme)설정 - 예비수학교사를 대상으로)

  • Shin, Hyun Sung;Choi, Heesun
    • Journal of the Korean School Mathematics Society
    • /
    • v.19 no.4
    • /
    • pp.357-371
    • /
    • 2016
  • The purpose of this study was to decide the task space and Rating Scheme of task difficulty in complicated mathematical modelling situations. One of main objective was also to conform the validation of Rating Scheme to determine the degree of difficulty by comparing the student performance with the statement of the theoretical model. In spring 2014, the experimental setting was in Modelling Course for 38 in-service teachers in mathematics education. In conclusions, we developed the Model of Task Space based on their solution paths in mathematical modelling tasks and Rating Scheme for task difficulty. The Validity of Rating Scheme to determine the degree of task difficulty based on comparing the student performance gave us the meaningful results. Within a modelling task the student performance verifies the degree of difficulty in terms of scoring higher using solution approaches determined as easier and vice versa. Another finding was some relations among three research topics, that is, degree of task difficulty on rating scheme, levels of students performance and numbers of specific heuristic. Those three topics showed the impressive consistence pattern.

On the Transforming of Control Space by Manipulator Jacobian

  • Fateh, Mohammad Mehdi;Farhangfard, Hasan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.101-108
    • /
    • 2008
  • The transposed Jacobian is proposed to transform the control space from task space to joint space, in this paper. Instead of inverse Jacobian, the transposed Jacobian is preferred to avoid singularity problem, short real time calculations and its generality to apply for rectangular Jacobian. On-line Jacobian identification is proposed to cancel parametric errors produced by D-H parameters of manipulator. To identify Jacobian, the joint angles and the end-effector position are measured when tracking a desired trajectory in task space. Stability of control system is analyzed. The control system is simulated for position control of a two-link manipulator driven by permanent magnet dc motors. Simulation results are shown to compare the roles of inverse Jacobian and transposed Jacobian for transforming the control space.

Hybrid Position/Force Control of Direct Drive Robots by Disturbance Observer in Task Coordinate Space. (외란 오브저버에의한 작업좌표공간에서의 다이렉트 드라이브 로보트의 위치와 힘의 하이브리드 제어)

  • Shin, Jeong-Ho;Komada, Satoshi;Ishida, Muneaki;Hori, Takamasa
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.411-413
    • /
    • 1992
  • This paper proposes a simple and high performance hybrid position/force control of robots based on disturbance compensation by using the disturbance observer in task coordinate space. The disturbance observer linealizes system of robot manipulators in task coordinate space and realizes acceleration control. To realize the strict acceleration control, the disturbance observer whose input is a position signal by simple computation, works as if it were a disturbance detector. The inverse kinematics can be simplified, because the disturbance observer in task coordinate space compensates not only the disturbance but also the error due to the simplification of the inverse kinematics. The new strategy is applied to a three-degrees-of freedom direct drive robot. The robust and simple hybrid position/force control is realized experimentally.

  • PDF

A Robust Behavior Planning technique for Mobile Robots (이동 로봇의 강인 행동 계획 방법)

  • Lee, Sang-Hyoung;Lee, Sang-Hoon;Suh, Il-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2006
  • We propose a planning algorithm to automatically generate a robust behavior plan (RBP) with which mobile robots can achieve their task goal from any initial states under dynamically changing environments. For this, task description space (TDS) is formulated, where a redundant task configuration space and simulation model of physical space are employed. Successful task episodes are collected, where $A^*$ algorithm is employed. Interesting TDS state vectors are extracted, where occurrence frequency is used. Clusters of TDS state vectors are found by using state transition tuples and features of state transition tuples. From these operations, characteristics of successfully performed tasks by a simulator are abstracted and generalized. Then, a robust behavior plan is constructed as an ordered tree structure, where nodes of the tree are represented by attentive TDS state vector of each cluster. The validity of our method is tested by real robot's experimentation for a box-pushing-into-a-goal task.

  • PDF

Expansion of the Web Space (웹 공간의 확장)

  • Kong, Heon-Tag;Ko, Sung-Bum
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.25-32
    • /
    • 2011
  • Current Web space does not provide standard integrated environment. This, especially in case of large task, can be a cause of low performance of task processing. We proposed an integrated space(called SB space) in this paper through which various actors can share their mutual process in processing a task together. SB space can be installed as a Web site and can be used effectively with Web space. This actually means the expansion of the Web space, which allows us to improve the productivity of the Web space notably. In this paper, this is proved through a concrete case study.

Genetic Algorithm Based Decentralized Task Assignment for Multiple Unmanned Aerial Vehicles in Dynamic Environments

  • Choi, Hyun-Jin;Kim, You-Dan;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.163-174
    • /
    • 2011
  • Task assignments of multiple unmanned aerial vehicles (UAVs) are examined. The phrase "task assignment" comprises the decision making procedures of a UAV group. In this study, an on-line decentralized task assignment algorithm is proposed for an autonomous UAV group. The proposed method is divided into two stages: an order optimization stage and a communications and negotiation stage. A genetic algorithm and negotiation strategy based on one-to-one communication is adopted for each stage. Through the proposed algorithm, decentralized task assignments can be applied to dynamic environments in which sensing range and communication are limited. The performance of the proposed algorithm is verified by performing numerical simulations.

Provision of Effective Spatial Interaction for Users in Advanced Collaborative Environment (지능형 협업 환경에서 사용자를 위한 효과적인 공간 인터랙션 제공)

  • Ko, Su-Jin;Kim, Jong-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.677-684
    • /
    • 2009
  • With various sensor network and ubiquitous technologies, we can extend interaction area from a virtual domain to physical space domain. This spatial interaction is differ in that traditional interaction is mainly processed by direct interaction with the computer machine which is a target machine or provides interaction tools and the spatial interaction is performed indirectly between users with smart interaction tools and many distributed components of space. So, this interaction gives methods to users to control whole manageable space components by registering and recognizing objects. Finally, this paper provides an effective spatial interaction method with template-based task mapping algorithm which is sorted by historical interaction data for support of users' intended task. And then, we analyze how much the system performance would be improved with the task mapping algorithm and conclude with an introduction of a GUI method to visualize results of spatial interaction.

  • PDF

Trajectory Planning of Industrial Robot using Spline Method in Task Space (직교좌표공간에서의 스플라인을 이용한 산업용 로봇의 궤적 생성 방법)

  • Chung, Seong Youb;Hwang, Myun Joong
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.9-13
    • /
    • 2016
  • Robot usually requires spline motion to move through multiple knots. In this paper, catmull-rom spline method is applied to the trajectory planning of industrial robot in task space. Centripetal catmull-rom is selected to avoid self-intersection and slow motion which can be occurred in uniform and chordal spline. The method to set two control points are proposed to satisfy velocity conditions of initial and final knots. To optimize robot motion, time scaling method is presented to minimize margin between real robot value and maximum value in velocity and acceleration. The simulation results show that the proposed methods are applied to trajectory planning and robot can follow the planned trajectory while robot motion does not exceed maximum value of velocity and acceleration.

A study on the manipulability measures of robot manipulators (로봇의 조작도 지수에 관한 연구)

  • Lee, Yeong-Il;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.105-112
    • /
    • 1998
  • Regarding the measure of dexterity of robot manipulators, two geometric tools, manipulability ellipsoids and manipulability polytopes, are examined and compared with each other. Even though the manipulability ellipsoid approach is the most widely used technique, it is shown that the manipulability ellipsoid transforms the inexact joint velocity constraints into task space and so it may fail to give an exact measure of dexterity and optimal direction of motion in task space. After showing that the polytope approach can handle such problems, we propose a practical polytope method which can be applied to 3-dimensional task space in general. The relation between manipulability ellipsoids and manipulability polytopes are also explored for a redundant case and a non-redundant one.

  • PDF