• Title/Summary/Keyword: Target localization

Search Result 305, Processing Time 0.026 seconds

Near-field Target Localization Using Bottom-mounted Linear Sensor Array in Multipath Environment (다중경로환경에서 바닥고정형 선배열센서를 이용한 근거리표적의 위치추정기법)

  • 이수형;류창수;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.7-14
    • /
    • 2000
  • In this paper, we propose a near-field target localization algorithm using a bottom-mounted linear sensor amy in a multipath environment. In a multipath environment, the conic angles of a target signals through each path are different, and the position of the target can be estimated using these conic angles and the time difference of these signals. We derive equations on the relation of time-difference of signals and conic angles estimates under the far-field assumption, and estimate the position of target by simultaneously solving these equations. For a certain geometry of a target and the sensor array, there exist cases when the conic angles are very close. In such a case, we estimate the position of the target using an additional 1-D search.

  • PDF

Target Localization for DIFAR Sonobuoy compensated Bearing Estimation and Sonobuoy Position Error (방위각 추정 및 소노부이 위치 오차를 보상한 DIFAR 소노부이의 표적 위치 추정 성능 향상 기법)

  • Gwak, Sang-Yell
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.221-228
    • /
    • 2020
  • A sonobuoy is dropped onto the surface of water to estimate the bearing of an underwater target. A Directional Frequency Analysis and Recording (DIFAR) sonobuoy has an error in the specific angular section due to the method of estimating bearing and noise, which causes an error in target localization using multiple sonobuoys. In addition, the position of the sonobuoy continues to move, but since a sonobuoy with a GPS is intermittently arranged, it is difficult to estimate the exact position of the sonobuoy. This also causes target localization performance degradation. In this paper, we propose a technique to improve the target localization performance by compensating for bearing errors using characteristics of the DIFAR sonobuoy and multiple-sonobuoy position errors based on the intermittently arranged active sonobuoy with a GPS.

A Geometric Approach for the Indoor Localization System (실내 위치 측위 시스템을 위한 기하학적 접근 기법)

  • Lim, Yu-Jin;Park, Jae-Sung;Ahn, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.97-104
    • /
    • 2008
  • Location-based services provide customized information or services according to the user's location. The existing localization schemes for outdoor environment are not applicable to the indoor localization system which requires higher accuracy of location estimation than that of the outdoor localization system. In this paper, we employ the received signal strength(RSS) to approximate the distance between a moving target and a reference point and use the triangulation method to estimate the location of the moving target for the indoor localization system in IEEE 802.15.4 wireless PAN(personal area network). For the indoor localization system, we propose a scheme which selects the best reference points to enhance the localization accuracy and adaptively reflects the changes in propagation environments of a moving target to the distance approximation. Through the implementation of the localization system, we have verified the performance of the proposed scheme in terms of the estimation accuracy.

Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter (순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증)

  • Lee, Seongheon;Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

QA of a stereotactic radiosurgery system for clinical application (정위방사선수술 시스템의 임상 적용을 위한 QA)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • We developed a sterotactic radiosurgery system which is comprised of 1) collimators with small circular aperture, 2) an angiographic target localizer, 3) a target localizer used for alignment of planned target position with isocenter of treatment machine, and 4) a treatment planning system named LinaPel. In this study, we performed a series of treatment simulations to specify and analyze geometrical errors contained our in-house radiosurgery system. As results, 1) using Geometrical Phantom(Radionics,USA), the accuracy of target localization by LinaPel was determined as Avg. =(equation omitted) the accuracy of mechanical isocenter was found out to be 0.6 $\pm$ 0.2 mm, 3) the positional difference of target localization which determined by CT and angiography was 0.8 mm, and their size difference was 1.5 mm, and 4) the positional error during whole treatment was found out to be 0.9 $\pm$ 0.3 mm. With these results, we concluded that our in-house radiosurgery system can be used clinically. However, these range of accuracies need periodical quality assurance strongly.

  • PDF

Accurate Localization Scheme using Lateration in Indoor Environments (실내 환경에서 래터레이션을 이용한 위치 측위 기법)

  • Lim, Yu-Jin;Park, Jae-Sung
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.251-258
    • /
    • 2010
  • In an indoor localization method taking the lateration-based approach, the location of a target is estimated with the location of anchor points (APs) and the approximated distances between the target and APs using received signal strength (RSS) measurements. The accuracy of distance estimation affects the localization accuracy of a lateration-based method. Since a radio propagation environment varies randomly in time and space, the highest RSSs do not necessarily give the best estimation of the distances between a target and APs. Thus, all APs hearing a target have been used for localization. However, the accuracy of a lateration-based method degrades if more APs beyond a certain threshold are used because the area of polygon with the APs increases. In this paper, we focus on reducing the size of the polygon to further increase the localization accuracy. We use the centroid of the polygon as a reference point to estimate the relative location of a target in the polygon. Once the relative location is estimated, only the APs which are closest to the target are used for localization to reduce the area of the polygon with the APs. We validate the proposed method by implementing an indoor localization system and evaluating the accuracy of the proposed method in the various experimental environments.

Factor Graph-based Multipath-assisted Indoor Passive Localization with Inaccurate Receiver

  • Hao, Ganlin;Wu, Nan;Xiong, Yifeng;Wang, Hua;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.703-722
    • /
    • 2016
  • Passive wireless devices have increasing civilian and military applications, especially in the scenario with wearable devices and Internet of Things. In this paper, we study indoor localization of a target equipped with radio-frequency identification (RFID) device in ultra-wideband (UWB) wireless networks. With known room layout, deterministic multipath components, including the line-of-sight (LOS) signal and the reflected signals via multipath propagation, are employed to locate the target with one transmitter and a single inaccurate receiver. A factor graph corresponding to the joint posterior position distribution of target and receiver is constructed. However, due to the mixed distribution in the factor node of likelihood function, the expressions of messages are intractable by directly applying belief propagation on factor graph. To this end, we approximate the messages by Gaussian distribution via minimizing the Kullback-Leibler divergence (KLD) between them. Accordingly, a parametric message passing algorithm for indoor passive localization is derived, in which only the means and variances of Gaussian distributions have to be updated. Performance of the proposed algorithm and the impact of critical parameters are evaluated by Monte Carlo simulations, which demonstrate the superior performance in localization accuracy and the robustness to the statistics of multipath channels.

Localization of Subsurface Targets Based on Symmetric Sub-array MIMO Radar

  • Liu, Qinghua;He, Yuanxin;Jiang, Chang
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.774-783
    • /
    • 2020
  • For the issue of subsurface target localization by reverse projection, a new approach of target localization with different distances based on symmetric sub-array multiple-input multiple-output (MIMO) radar is proposed in this paper. By utilizing the particularity of structure of the two symmetric sub-arrays, the received signals are jointly reconstructed to eliminate the distance information from the steering vectors. The distance-independent direction of arrival (DOA) estimates are acquired, and the localizations of subsurface targets with different distances are realized by reverse projection. According to the localization mechanism and application characteristics of the proposed algorithm, the grid zooming method based on spatial segmentation is used to optimize the locaiton efficiency. Simulation results demonstrate the effectiveness of the proposed localization method and optimization scheme.

Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation

  • Liu, Peipei;Jang, Jinho;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.301-310
    • /
    • 2020
  • The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.