• 제목/요약/키워드: Takagi-Sugeno fuzzy inference

검색결과 19건 처리시간 0.03초

A hierarchical fuzzy controller using structured Takagi-Sugeno type fuzzy inference engine

  • Moon G. Joo;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.179-184
    • /
    • 1998
  • In this paper, a new hierarchical fuzzy inference system (HFIS) using structured Takagi-Sugeno type fuzzy inference units(FIUs) is proposed. The proposed HFIS not only solves the rule explosion problem in conventional HFIS, but also overcomes the readability problem caused by the structure where outputs of previous level FIUs are used as input variables directly. Gradient descent algorithm is used for adaptation of fuzzy rules. The ball and beam control is performed in computer simulation to illustrate the performance of the proposed controller.

  • PDF

Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증 (Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification)

  • 최승용;한건연
    • 한국수자원학회논문집
    • /
    • 제44권7호
    • /
    • pp.537-551
    • /
    • 2011
  • 본 연구에서는 앞선 연구를 통해 선정된 최적 입력 자료 조합을 이용하여 한강수계의 왕숙천과 금강유역의 갑천에 대한 Takagi-Sugeno 퍼지기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형을 구축하였다. 구축된 뉴로-퍼지 홍수예측 모형을 한강수계의 왕숙천과 금강유역의 갑천에 적용하여 30분, 60분, 90분, 120분, 150분, 180분의 선행시간에 대해 각각 홍수예측을 수행하였다. 선행시간별 예측수위를 관측수위와 비교한 결과 안정되고 정확도 높은 홍수예측을 하는 것을 확인할 수 있었다. 추가적으로 정량적 평가를 위해 평균제곱근 오차(Root Mean Square Error)와 같은 통계지표를 산정하여 모형의 적용성을 검증하였다. 검증 결과 모든 통계지표에서 큰 오차 없이 성공적으로 홍수예측이 모의됨을 확인할 수 있었다. 본 연구결과는 향후 중소하천에서 충분한 선행시간을 확보한 정확도 높은 홍수정보시스템의 구축에 활용할 수 있을 것으로 판단된다.

Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (I) : 최적 입력자료 조합의 선정 (Establishment and Application of Neuro-Fuzzy Real-Time Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (I) : Selection of Optimal Input Data Combinations)

  • 최승용;김병현;한건연
    • 한국수자원학회논문집
    • /
    • 제44권7호
    • /
    • pp.523-536
    • /
    • 2011
  • 본 연구의 목적은 중소하천에서의 홍수예측을 위해 사용되는 기존의 수문학적 모형이 가지고 있는 문제점을 개선한 홍수예측 모형을 개발하는데 있다. 이를 위해 기존의 수문학적 강우-유출 모형에서 사용되는 많은 수문학적 자료 및 매개변수들의 사용 없이 오직 수위 및 강우측정 자료만을 이용하여 홍수를 예측할 수 있는 Takagi-Sugeno 퍼지 추론기법과 신경망을 연계한뉴로-퍼지홍수예측 모형을 구축하고자 하였다. 뉴로-퍼지 홍수예측 모형의 예측정확도는 입력자료로 사용되는 강우와 수위 자료의 시간적 분포 및 자료의 수에 의해 결정된다. 따라서 본 연구에서는 홍수예측 모형 구축을 위한 최적 입력 자료 조합 선정을 위해 다양한 강우와 수위의 입력자료 조합을 구성하여 적용하였고, 이를 통해 홍수 예측을 위한 뉴러-퍼지 홍수예측 모형의 최적 입력 자료 조합을 선정하였다.

GA 기반 TSK 퍼지 분류기의 설계와 응용 (A Design of GA-based TSK Fuzzy Classifier and Its Application)

  • 곽근창;김승석;유정웅;김승석
    • 한국지능시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.754-759
    • /
    • 2001
  • 본 논문은 주성분분석기법, 퍼지 클러스터링, ANFIS(Adaptive Neuro-Fuzzy Inference System)와 하이브리드 GA(Hybrid Genetic Algorithm)를 이용하여 GA 기반 TSK(Takagi-Sugeno-Kang) 퍼지 분류기를 제안한다. 먼저 구조동정은 주성분분석기법을 이용하여 데이터 성분간의 상관관계가 제거하도록 입력데이터를 변환하고, FCM(Fuzzy c-means) 클러스터링과 ANFIS의 융합을 통해 초기 TSK 퍼지 분류기를 구축한다. 구축된 초기 분류기의 파라미터를 초기집단으로 발생시켜 AGA(Adaptive GA)와 RLSE(Recursive Least Square Estimate)에 의해 파라미터 동정을 수행한다. 이렇게 함으로서 퍼지 클러스터링의 효율적인 입력공간분할로 ANFIS의 문제점을 해결할 수 있고, AGA에 의해 집단의 다양성 유지와 전역적인 최적해의 수렴을 가속화할 수 있다. 마지막으로, 제안된 방법은 Iris 데이터 분류문제에 적용하여 이전의 다른 논문에 비해 좋은 성능을 보임을 알 수 있었다.

  • PDF

On Chaotic Behavior of Fuzzy Inferdence Rule Based Nonlinear Functions

  • Ikoma, Norikazu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.861-864
    • /
    • 1993
  • This research provides the results of a trial to generate the chaos by using nonlinear function constructed by fuzzy inference rules. The chaos generation function or chaotic behavior can be obtained by using Takagi-Sugeno fuzzy model with some constraint of the relationship of its parameters. Two examples are shown in this research. The first is simple example that construct of logistic image by fuzzy model. The second is more complicated one that provide the chaotic time series by non-linear autoregression based on fuzzy model. Simulated results are shown in these examples.

  • PDF

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

자기학습형 뉴럴-퍼지 제어기에 의한 유도전동기 서어보시스템 (A study on Induction Motor Servo System using Self-learning Neural-Fuzzy Networks)

  • 양승호;김세찬;원충연;김덕헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.142-144
    • /
    • 1993
  • In this study, a Self-learning Neural-Fuzzy Networks is presented, Because of the fuzzy controller property, the designing problems of fuzzy if-then rules, membership functions and inference methods are very complex task. Thus in this paper we proposed the Neural-Fuzzy Networks composed by Sugeno and Takagi's fuzzy inference method and learned by using temporal back propagation algorithm. The proposed method can refine automatically the fuzzy if-then rules without human expert's knowledges. The induction motor servo system is used to demonstrate the effectiveness of the proposed control scheme and the feasibility of the acquired fuzzy controller. All results are supported by simulation.

  • PDF

New Fuzzy Inference System Using a Kernel-based Method

  • Kim, Jong-Cheol;Won, Sang-Chul;Suga, Yasuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2393-2398
    • /
    • 2003
  • In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition, the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed technique.

  • PDF

단순한 형태의 계층 퍼지 제어기 (A Simple Hierarchical fuzzy Controller)

  • 주문갑;이진수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.505-507
    • /
    • 1998
  • In this paper, a simple hierarchical fuzzy inference system using structured Takagi-Sugeno type fuzzy inference units(SFIUs) is proposed. The number of fuzzy rules of the proposed HFIS is minimum in the sense of that only the number of partitions of each system variables, not of intermediate outputs of layered fuzzy controllers, are concerned. And resulted number of fuzzy rules is a summation of partition in each system variables. Gradient descent algorithm is used for adaptation of fuzzy rules. The ball and beam control is performed in computer simulation to illustrate the performance of the proposed controller.

  • PDF

퍼지 관측기-제어기의 국소적 독립 원리 (Local Separation Principle of Fuzzy Observer-Controller)

  • 이호재;박진배;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.902-906
    • /
    • 2004
  • 본 논문은 타카기-수게노 (Takagi-Sugeno: T-S) 퍼지 모델 기반 관측기-제어기의 독립 설계 원리를 조사한다. T-S 퍼지 시스템의 전건부 변수가 측정 가능하거나 출력으로부터 계산 가능한 경우 T-S 퍼지 모델 기반 관측기와 T-S 퍼지 모델 기반제어기는 독립적으로 설계 가능하며, 이에 따른 관측기 기반 출력 궤환 제어기는 전역적 안정화 가능성을 보장한다. 한편 T-S 퍼지 시스템의 전건부 변수가 측정 불가능하거나 출력으로부터 계산 불가능한 경우에는, T-S 퍼지 모델 기반 제어기와 관측기를 구현하기 위하여 퍼지 추론 시스템의 전건부 변수를 추정해야 한다. 본 논문은 전건부 변수가 측정 불가능한 경우 T-S 퍼지 모델 기반 제어기와 T-S 퍼지 모델 기반 관측기의 독립적 설계 가능성을 조사한다. T-S 퍼지 모델 기반 제어기와 관측기의 수렴속도가 충분히 빠를 경우 전역적인 독립 설계가 가능함을 보이며, 그렇지 않은 경우 국소적인 독립 설계가 가능함을 보인다.