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Abstract

This research provides the results of a trial to
generate the chaos by using nonlinear function
constructed by fuzzy inference rules. The chaos
generating function or chaotic behavior can be
obtained by using Takagi-Sugeno fuzzy medel
with some constraint of the relationship of its
parameters. Two examples are shown in this
research. The first is simple example that con-
struct of logistic image by fuzzy model. The sec-
ond is more complicated one that provide the
chaotic time series by non-linear autoregression
based on fuzzy model. Simulated results are
shown in these examples.
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1 Introduction

Generally, fuzzy inference and its rules have the prop-
erty which matches our intuition, such that the near
conditions will derive the almost same conclusions.
For the contrast, by the chaotic system, we obtain
pretty different results although by starting from the
near initial conditions. Usually, it seems to be almost
completely different result of these two systems. And
so, it is considered that the fusioning of fuzzy system
and chaotic system is difficult. But in the case of
repeatedly using the nonlinear function which is con-
structed by fuzzy inference rules, we may encounter
the phenomena like chaos. This paper reports the
chaotic behavior of fuzzy inference based nenlinear
functions. This might bring us the new look of fuzzy
inference rule based function with the results of chaos
research.

This research provides the results of a trial to
generate the chaos by using nonlinear function con-
structed by fuzzy inference rules. This is motivated
by followings. We assume the situation that we have
to use the fuzzy inference system repeatedly. In this
case, the stability or another features become impor-
tant. Recently, the new research field named chaos]]
is developed. It treats the behavior under the situ-

ation of repeatedly applied nonlinear function. This
could serve us the new approach to analyze the fuzzy
inference system. In order to accomplish this, for the
first step, we construct the nonlinear function, which
has the chaotic property, by fuzzy inference rules.
And apply it repeatedly to obtain the series of its
output. Then we discuss about its chaotic behavior.
This paper contains two topics as following. For
the first example, we summarize the fuzzy model pro-
posed by Takagi and Sugeno [4] and we also summa-
rize the chaos, by referring the early research of chaos
[1, 2] for simple example. The construction of logistic
image by fuzzy inference rules is shown and obtain
the same result of chaos of logistic image. The second
example treats the chaotic time series generation by
fuzzy model based non-linear autoregressive model.
Computer simulation will show us its results.

2 Summary of Fuzzy Model

For simplify, we only treat fuzzy model, which was
proposed by Takagi and Sugeno [4], as fuzzy inference
rule. Fuzzy model has great merits to analyze its
behavior, because its conclusion part is described by
the linear equation. In this section, we summarize the
fuzzy inference rule notation for the preparation of
after discussion. We can write down following Rules,
which are simplest one to be used for single input z
and single output y fuzzy inference,

IF z IS X; THENy = fi(z), i =1.2,..,B (1)

asimage f() : X3z y€eY

R R
f(z) =Zﬂi'fa(z)/_}:ui(m)- (2)

Where, f;(+) is linear equation
filg)=ap +aj - 3

and pi(z) is a membership function which corre-
sponds to the fuzzy label X;. Each membership func-
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tion has the shape of trapezoid and it is described as
follows

0.0 z< Li,z > R;
1.0 l,' S z S Ti
[l.g(.t) = (:1: - l,’)/(‘l‘,‘ -_— I,') L,’ <z <l;
' (@—r)/(li—mi) ri<z<R

(4)

This formula show us that i-th membership function
can be denoted by four parameters L;, {;, 7;, and R;.
Here, we assume that the each label is restricted by
the followings

L= { i1 i>1 5)

infzex {z} otherwise
and
_ l,'_l 1>1
Ri= { sup,ex {z} otherwise ()

Under these conditions, the number of parameters
which describe one membership function is going to
be only two. Then we can obtain the more simple de-
scription of nonlinear function constructed by fuzzy
inference rules, which is partially defined, as follows

pi(x) - fi(zx) + (L = pi(@)] - fim1(2)
yLi<z<liand? >0

pi(x) - fi(z) + {1 — pi(@)]* firr(2)
i<z < Ryjandi < N

1.0 ,otherwise

fz) =

(7

3 Examples of Chaos

It is known that Chaos is named by T.Y.Li and
J.A.Yorke {1]. But the definition of chaos is slightly
different between the researchers. Then we are not
concerning about the definition of chaos, only look-
ing the behavior of that system. Simple examples
will give us the direct understanding of chaos. For
the preparation, we define the situation by the for-
mulation of first order difference equation denoted in
the general form as

T4y = Fxy). (8)

In the various images F(-), one image will generate
chaos or another will bring no chaotic one. So the
choice of image is important.

One of the simplest and most famous example is
introduced here. It is the logistic image application
shown in M.May {2], in which the logistic image

Fz)=a-2z(1-12) (9)

is used. Where a is the control parameter to govern
the behavior of series x4, if we choose ¢ > 3.57...,
the series will be chaos.

4 Construction of Logistic Im-
age by Fuzzy Model

Chaos by using logistic image is summarized in the
previous section. This type of image can be easily
constructed by fuzzy model as follows. For the sim-
ple discussion, let the range of input variable z nor-
malized on [0,1]. In the case we need the only two
fuzzy inference rules. These two rules are show as
below.

IF z IS X; THEN y = fi(x) (10)
IF 2 IS X, THEN y = fo(z) (11)
a a a
aé:i,a}=0, a%:—-g,cﬁ:—z-, (12)
li=rn=0l=r;=1. (13)

In these rules, a is the same parameter mentioned at
logistic image.

5 Nonlinear Autoregres-

sive Model based on Fuzzy
Model

Let’s consider the time series denoted by
L1, 8, L3, -, TN-1, LN (14)

and lag p autoregression model constructed by fuzzy
model

R R
Ty = Z fi(}'t)ﬂi(Yt)/Z Bi(ye)s (15)

where R is the number of rules as mentioned before
and

Yt = ['Tt.—lvzt—27"-vzt-—p]T' (16)

According to the above general notation, the non-
linear function based on fuzzy model is as (y €
XP) — (¢ € X). When p increases, the dimension
of input space become so high and we will encounter
the situation so-called curse of dimension . To avoid
this, we divide the rule set for each time lag as follows

p N;

o> fis(@emmi(mes)

i=1 j=1
T = ! —— , (17)

ZZH;‘;‘(M—:‘)

i=1j=1

where NV; denotes the number of rules for lag i, f;;
and pu;; are corresponding to j-th rule of lag i each
other. This regressive model is considered as the
one of the linear autoregressive model but coefficients
varies according to the input variables.
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6 Example of Chaotic Time
Series

Non-linear autoregressive model base on fuzzy model
is shown in previous section. Here, the generation of
chaotic time series are discussed by varying the pa-
rameter of that rules. As mentioned above, some
combination of parameter values will generate the
chaotic time series and another will not. So at first,
we impose the more restriction for the model. The
pair of membership function p(-) and linear function
f(-) are only three for each lag. So the membership
functions are only described by two parameters such
that and they are described as follows

I.' = 1,'2,1',' = Ti2, (18)
and the linear functions are constant as follows
.fil=.fl'3=ai fi2=bi3i=1327""p' (19)

In this case, the fuzzy model can be written as fol-
lowing simple one

p 3
2 2 fii(we-i)pij(@e-s)
.1‘1=I=1"=p1 3 (20)
DN mislwes)
i=1 j=1
Ty = %Z{ai[llil(zt—i)+l’/i3(zt—i)]
+biptiz(Te-i)} - (21)

By using the restricted model with some values of
parameters, scme examples of time series are gener-
ated. In this paper, two kinds of fuzzy model are
used. The parameters of each rule are shown in table
1. In each fuzzy model, two different initial values
for autoregression are used to generate time series.
These initial values are shown in table 2. The re-
sults of generated time series of each fuzzy model are
shown in figure 1 and 2 respectively. Figure 1 shows
the lag 2 autoregressive model and figure 2 shows the
lag 4 case. In each figure, (a) and (b) show the results
of different initial values.

By looking each figure, figure 1 seems to be the
periodic behavior but its amplitude and frequency
have correlation. This is the same effect of the model
in [3] called as the amplitude-dependent frequency .
Figure 2 has the typically non-linear behavior of time
series. It seems not to be a simple periodic.

Table 1: Conditions of example of time series

Model No. | lag ¢ l; r; a; b;
1 1 -0.5 05 1.5 0.2
-0.5 0.5 -14 -04
0.5 05 38 0.2
-0.5 05 -1.8 -1.2
-05 0.5 1.8 -0.2
0.5 05 -2.8 -0.8

w0 DD D

7 Concluding Remark

Some example of chaotic non-linear function con-
structed by fuzzy inference rules are shown. The sim-
plest example shows that logistic image can be con-
structed by fuzzy inference rules easily. Generation
of chaotic time series are also shown by imposing the
restriction of rule parameters to fuzzy model. Some
examples of chaotic time series are shown by com-
puter simulation. These results show us that chaos
or chaotic series can easily obtained by fuzzy infer-
ence rule system cause of its non-linearlity.

In the case of fuzzy inference rule base function,
analytical method cannot applied directly. So the
criterion what obtained function generates chaos or
not cannot calculate by analytic way. The example
shown in this parer is only example of chaotic case.
By considering this situation, there still remain for
the future researches, that how chaos or not depends
on the parameters of fuzzy inference rules. It is an
interesting topic of fuzzy inference and chaos and will
be researched near future.
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Table 2: Conditions of example of time series

Model No. T T9 Model No. | - 1  Te T3 T4
1 (a [[0.25 0.25 2 () || 05 02 01 03
(b) || 0.00 0.00 (b) | 0.3 0.2 01 0.3
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Figure-1:(a) chaotic time series obtained by fuzzy model, with rule 1, initial values (a) of rule 1
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Figure-1:(b) chaotic time series obtained by fuzzy model, with rule 1, initial values (b) of rule 1
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Figure-2:(a) chaotic time series obtained by fuzzy model, with rule 2, initial values (a) of rule 2
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Figure-2:(b) chaotic time series obtained by fuzzy model, with rule 2, initial values (b) of rule 2
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