• Title/Summary/Keyword: Takagi-Sugeno fuzzy inference

Search Result 19, Processing Time 0.022 seconds

A hierarchical fuzzy controller using structured Takagi-Sugeno type fuzzy inference engine

  • Moon G. Joo;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.179-184
    • /
    • 1998
  • In this paper, a new hierarchical fuzzy inference system (HFIS) using structured Takagi-Sugeno type fuzzy inference units(FIUs) is proposed. The proposed HFIS not only solves the rule explosion problem in conventional HFIS, but also overcomes the readability problem caused by the structure where outputs of previous level FIUs are used as input variables directly. Gradient descent algorithm is used for adaptation of fuzzy rules. The ball and beam control is performed in computer simulation to illustrate the performance of the proposed controller.

  • PDF

Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.537-551
    • /
    • 2011
  • Based on optimal input data combination selected in the earlier study, Neuro-Fuzzy flood forecasting model linked Takagi-Sugeno fuzzy inference theory with neural network in Wangsukcheon and Gabcheon is established. The established model was applied to Wangsukcheon and Gabcheon and water levels for lead time of 0.5 hr, 1 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr are forecasted. For the verification of the model, the comparisons between forecasting floods and observation data are presented. The forecasted results have shown good agreements with observed data. Additionally to evaluate quantitatively for applicability of the model, various statistical errors such as Root Mean Square Error are calculated. As a result of the flood forecasting can be simulated successfully without large errors in all statistical error. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

Establishment and Application of Neuro-Fuzzy Real-Time Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (I) : Selection of Optimal Input Data Combinations (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (I) : 최적 입력자료 조합의 선정)

  • Choi, Seung-Yong;Kim, Byung-Hyun;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.523-536
    • /
    • 2011
  • The objective of this study is to develop the data driven model for the flood forecasting that are improved the problems of the existing hydrological model for flood forecasting in medium and small streams. Neuro-Fuzzy flood forecasting model which linked the Takagi-Sugeno fuzzy inference theory with neural network, that can forecast flood only by using the rainfall and flood level and discharge data without using lots of physical data that are necessary in existing hydrological rainfall-runoff model is established. The accuracy of flood forecasting using this model is determined by temporal distribution and number of used rainfall and water level as input data. So first of all, the various combinations of input data were constructed by using rainfall and water level to select optimal input data combination for applying Neuro-Fuzzy flood forecasting model. The forecasting results of each combination are compared and optimal input data combination for real-time flood forecasting is determined.

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

On Chaotic Behavior of Fuzzy Inferdence Rule Based Nonlinear Functions

  • Ikoma, Norikazu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.861-864
    • /
    • 1993
  • This research provides the results of a trial to generate the chaos by using nonlinear function constructed by fuzzy inference rules. The chaos generation function or chaotic behavior can be obtained by using Takagi-Sugeno fuzzy model with some constraint of the relationship of its parameters. Two examples are shown in this research. The first is simple example that construct of logistic image by fuzzy model. The second is more complicated one that provide the chaotic time series by non-linear autoregression based on fuzzy model. Simulated results are shown in these examples.

  • PDF

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

A study on Induction Motor Servo System using Self-learning Neural-Fuzzy Networks (자기학습형 뉴럴-퍼지 제어기에 의한 유도전동기 서어보시스템)

  • Yang, Seung-Ho;Kim, Se-Chan;Won, Chung-Yuen;Kim, Duk-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.142-144
    • /
    • 1993
  • In this study, a Self-learning Neural-Fuzzy Networks is presented, Because of the fuzzy controller property, the designing problems of fuzzy if-then rules, membership functions and inference methods are very complex task. Thus in this paper we proposed the Neural-Fuzzy Networks composed by Sugeno and Takagi's fuzzy inference method and learned by using temporal back propagation algorithm. The proposed method can refine automatically the fuzzy if-then rules without human expert's knowledges. The induction motor servo system is used to demonstrate the effectiveness of the proposed control scheme and the feasibility of the acquired fuzzy controller. All results are supported by simulation.

  • PDF

New Fuzzy Inference System Using a Kernel-based Method

  • Kim, Jong-Cheol;Won, Sang-Chul;Suga, Yasuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2393-2398
    • /
    • 2003
  • In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition, the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed technique.

  • PDF

A Simple Hierarchical fuzzy Controller (단순한 형태의 계층 퍼지 제어기)

  • Joo, Moon-G.;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.505-507
    • /
    • 1998
  • In this paper, a simple hierarchical fuzzy inference system using structured Takagi-Sugeno type fuzzy inference units(SFIUs) is proposed. The number of fuzzy rules of the proposed HFIS is minimum in the sense of that only the number of partitions of each system variables, not of intermediate outputs of layered fuzzy controllers, are concerned. And resulted number of fuzzy rules is a summation of partition in each system variables. Gradient descent algorithm is used for adaptation of fuzzy rules. The ball and beam control is performed in computer simulation to illustrate the performance of the proposed controller.

  • PDF

Local Separation Principle of Fuzzy Observer-Controller (퍼지 관측기-제어기의 국소적 독립 원리)

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.902-906
    • /
    • 2004
  • A separation principle of the Takagj-Sugeno (T-S) fuzzy-model-based observer-control is investigated. When the premise variables are able to be measured or directly computed from the outputs of the T-S fuzzy system and the fuzzy inference rules for the plant, control, and observer share the premise parts, the T-S fuzzy-model-based observer and the T-S fuzzy-model-based control can be separately designed such that the global stabilizability is guaranteed by the fuzzy observer-based output-feedback control. In this case, the global separation principle is well established. On the other hand, when the premise variables are unmeasurable or cannot be computed from the outputs, they should also be estimated. We examine the separation principle of this case. If the decay rates of the T-S fuzzy-model-based control and observer are sufficiently fast, the global separation is assured. Otherwise we show that the separation principle holds locally.