• Title/Summary/Keyword: Tag Bits

Search Result 40, Processing Time 0.026 seconds

Adaptive Decision Algorithm for an Improvement of RFID Anti-Collision (RFID의 효율적인 태그인식을 위한 Adaptive Decision 알고리즘)

  • Ko, Young-Eun;Oh, Kyoung-Wook;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • in this paper, we propose the Adaptive Decision Algorithm for RFID Tag Anti-Collision. We study the RFID Tag anti-collision technique of ALOHA and the anti-collision algorithm of binary search. The existing technique is several problems; the transmitted data rate included of data, the recognition time and energy efficiency. For distinction of all tags, the Adaptive Decision algorithm identify smaller one ,each Tag_ID bit's sum of bit '1'. In other words, Adaptive Decision algorithm had standard of selection by actively, the algorithm can reduce unnecessary number of search even than the exisiting algorithm. The Adaptive Decision algorithm had performance test that criterions were reader's number of repetition and number of transmitted bits for understanding tag. We showed the good performance of Adaptive Decision algorithm better than exisiting algorithm.

A Study on Low-Cost RFID System Mutual Authentication Scheme using Key Division (키 분할을 이용한 Low-Cost RFID 시스템 상호 인증 방안에 관한 연구)

  • Kang, Soo-Young;Lee, Im-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.431-438
    • /
    • 2007
  • RFID system is core technology that construct ubiquitous environment for replacement of barcode technology. Use ratio of RFID system rapidly increase because the technology has many good points such as identification speed, storage space, convenience etc. But low-cost tag operates easily by query of reader, so the system happened user privacy violent problem by tag information exposure. The system studied many ways for security application, but operation capability of low-cost tag is about $5K{\sim}10K$ gates, but only $250{\sim}3K$ gates allocated security part. So it is difficult to apply security to the system. Therefore, this scheme uses dividing 64 bits and reduces arithmetic, so proposed scheme provide mutual authentication that can apply to low-cost RFID system. Existing methods divide by 4 and used 96 bits. However, that reduces 32 bits length for lightweight and reduced from communication number of times of 7 times to 5 times. Also, because offer security by random number than existing scheme that generate two random numbers, that is more efficient. However, uses hash function for integrity that was not offered by XOR arithmetic and added extension of proposed scheme. Extended scheme is not offered efficiency than methods that use XOR arithmetic, but identification distance is mode that is proposed secure so that can use in for RFID system.

Adaptive Group Separation Anti-Collision Algorithm for Efficient RFID System (효율적인 RFID 시스템을 위한 Adaptive Group Separation 충돌방지 알고리듬)

  • Lee, Hyun-Soo;Lee, Suk-Hui;Bang, Sung-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.299-300
    • /
    • 2008
  • In this paper, we propose Adaptive Group Separation(AGS) algorithm for efficient RFID system. AGS algorithm determines the optimized initial prefix size m, and divides the group of ��$2^m$. A reader requests the group and searches the tag ID. If a tag collision occurred, reader adds a one bit, '0' or '1' at first bit of collision point. As a result, we observe that transmitted data bits and the recognition time are decreased.

  • PDF

Collision Tree Based Anti-collision Algorithm in RFID System (RFID시스템에서 충돌 트리 기반 충돌방지 알고리즘)

  • Seo, Hyun-Gon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.316-327
    • /
    • 2007
  • RFID (Radio Frequency Identification) is one of the most promising air interface technologies in the future for object identification using radio wave. If there are multiple tags within the range of the RFID tag reader, all tags send their tag identifications to the reader at the same time in response to the reader's query. This causes collisions on the reader and no tag is identified. A multi-tag identification problem is a core issue in the RFID. It can be solved by anti-collision algorithm such as slot based ALHOA algorithms and tree based algorithms. This paper, proposes a collision tree based anti-collision algorithm using collision tree in RFID system. It is a memory-less algorithm and is an efficient RFID anti-collision mechanism. The collision tree is a mechanism that can solve multi-tag identification problem. It is created in the process of querying and responding between the reader and tags. If the reader broadcasts K bits of prefix to multiple tags, all tags with the identifications matching the prefix transmit the reader the identifications consisted of k+1 bit to last. According to the simulation result, a proposed collision tree based anti-collision algorithm shows a better performance compared to tree working algorithm and query tree algorithm.

A study on enhanced M-ary QT algorithm using collision bits position in RFID system (RFID 시스템에서 충돌비트 위치를 이용한 M-ary QT 알고리즘 향상에 관한 연구)

  • Kim, Kwan-Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.109-117
    • /
    • 2016
  • The most important mission of RFID reader is identify EPC (Electronic Product Code) of RFID tag of products that located within distinguishable range of RFID reader. RFID reader transmits query message to RFID tags through wireless channel and RFID tags send unique EPC to response its query message simultaneously. therefore tag collision occurred frequently. RFID tags collision resolution algorithm required to apply RFID technology to various industries. In this paper, we propose enhanced M-ary algorithm that collision bits location is used by not only RFID reader but also tags. the main feature of the proposed algorithm is that integrate multiple query message of M-ary QT algorithm to the single query message by analyze multiple response messages from tags. the simulation results show that the proposed algorithm give better performance than M-ary QT algorithm in terms of the number of query-response, identification efficiency and communication overhead.

Parallel Descrambling of Transponder Telegram for High-Speed Train (고속철도용 트랜스폰더 텔레그램의 병렬 디스크램블링 기법)

  • Kwon, Soon-Hee;Park, Sungsoo;Shin, Dong-Joon;Lee, Jae-Ho;Ko, Kyeongjun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.163-171
    • /
    • 2016
  • In order to detect the exact position of high-speed train, it is necessary to obtain location information from the transponder tag installed along the track. In this paper, we proposed parallel descrambling scheme for high-speed railway transponder system, which aims for reducing the processing time required to decode telegram. Since a telegram is stored in a tag after information bits are scrambled by an encoder, decoding procedure includes descrambling of received telegram to recover the original information bits. By analyzing the structure of the descrambling shift register circuit, we proposed a parallel descrambling scheme for fast decoding of telegram. By comparing the required number of clocks, it is shown that the proposed scheme significantly outperforms the original one.

Implementation & Verification of RFID Gen2 Protocol on FPGA Prototyping board (FPGA를 이용한 RFID Gen2 protocol의 구현 및 검증)

  • Je, Young-Dai;Kim, Jae-Lim;Jang, Il-Su;Yang, Hoon-Gee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.869-872
    • /
    • 2008
  • This paper presents the VHDL implementation procedure of the passive RFID tag in Ultra High Frequency RFID system. The operation of the tag compatible with the EPCglobal Class1 Generation2(GEN2) protocol is verified by timing simulation after synthesis and implementation on prototyping board. Due to the reading range with relatively large distance, a passive tag needs digital processor which facilitates faster decoding, encoding and state transition for enhancement of the interrogation rate. Also with UART communication, verify a inventory Round in Gen2 Protocol. The verification results with the fastest data rate, 640kbps, and multi tags environment scenario show that the implemented tag spend 1.4ms transmitting the 96bits EPC to reader.

  • PDF

An Anti-Collision Algorithm with 4-Slot in RFID Systems (RFID 시스템에서 4 슬롯을 이용한 충돌방지 알고리즘)

  • Kim, Yong-Hwan;Kim, Sung-Soo;Ryoo, Myung-Chun;Park, Joon-Ho;Chung, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.111-121
    • /
    • 2014
  • In this paper, we propose tree-based hybrid query tree architecture utilizing time slot. 4-Bit Pattern Slot Allocation(4-SL) has a 8-ary tree structure and when tag ID responses according to query of the reader, it applies a digital coding method, the Manchester code, in order to extract the location and the number of collided bits. Also, this algorithm can recognize multiple Tags by single query using 4 fixed time slots. The architecture allows the reader to identify 8 tags at the same time by responding 4 time slots utilizing the first bit($[prefix+1]^{th}$, F ${\in}$ {'0' or '1'}) and bit pattern from second ~ third bits($[prefix+2]^{th}{\sim}[prefix+3]^{th}$, $B_2{\in}$ {"00" or "11"}, $B_1{\in}$ {"01" or "10"}) in tag ID. we analyze worst case of the number of query nodes(prefix) in algorithm to extract delay time for recognizing multiple tags. The identification delay time of the proposed algorithm was based on the number of query-responses and query bits, and was calculated by each algorithm.

Enhanced Anti-Collision Protocol for Identification Systems: Binary Slotted Query Tree Algorithm

  • Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1092-1097
    • /
    • 2011
  • An anti-collision protocol which tries to minimize the collision probability and identification time is the most important factor in all identification technologies. This paper focuses on methods to improve the efficiency of tag's process in identification systems. Our scheme, Binary Slotted Query Tree (BSQT) algorithm, is a memoryless protocol that identifies an object's ID more efficiently by removing the unnecessary prefixes of the traditional Query Tree (QT) algorithm. With enhanced QT algorithm, the reader will broadcast 1 bit and wait the response from the tags but the difference in this scheme is the reader will listen in 2 slots (slot 1 is for 0 bit Tags and slot 2 is for 1 bit Tags). Base on the responses the reader will decide next broadcasted bit. This will help for the reader to remove some unnecessary broadcasted bits which no tags will response. Numerical and simulation results show that the proposed scheme decreases the tag identification time by reducing the overall number of request.

Improvement of Anti-Collision Performance in ISO/IEC 18000-6 Type B Protocol of the 900MHz RFID System (900MHz RFID 표준 프로토콜(ISO/IEC 18000-6 type B)에서의 충돌방지 성능 개선)

  • Kwon Dae-Ken;Kim Wan-Jin;Kim Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.540-547
    • /
    • 2006
  • This paper proposes a novel anti-collision method for the ISO/IEC 18000-6 type B protocol which is the standard protocol of the 900 MHz RFID system. We improve the anti-collision performance by reducing the transmission number of commands and the length of bits required for multi-tag identification in the ISO/IEC 18000-6 type B protocol. Simulation results show that the proposed method improves the multi-tag identification time by 21.7% over the conventional method, irrespective of number of tags.