• Title/Summary/Keyword: TaN film

Search Result 138, Processing Time 0.031 seconds

Thermal Stability of the Interface between TaN Deposited by MOCVD and Electroless-plated Cu Film (MOCVD 방법으로 증착된 TaN와 무전해도금된 Cu박막 계면의 열적 안정성 연구)

  • 이은주;황응림;오재응;김정식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1091-1098
    • /
    • 1998
  • Thermal stability of the electroless deposited Cu thin film was investigated. Cu/TaN/Si multilayer was fabricated by electroless-depositing Cu thin layer on TaN diffusion barrier layer which was deposited by MOCVD on the Si substrate, and was annealed in $H_2$ ambient to investigate the microstructure of Cu film with a post heat-treatment. Cu thin film with good adhesion was successfully deposited on the surface of the TaN film by electroless deposition with a proper activation treatment and solution control. Microstructural property of the electroless-deposited Cu layer was improved by a post-annealing in the reduced atmosphere of $H_2$ gas up to $600^{\circ}C$. Thermal stability of Cu/TaN/Si system was maintained up to $600^{\circ}C$ annealing temperature, but the intermediate compounds of Cu-Si were formed above $650^{\circ}C$ because Cu element passed through the TaN layer. On the other hand, thermal stability of the Cu/TaN/Si system in Ar ambient was maintained below $550^{\circ}C$ annealing temperature due to the minimal impurity of $O_2$ in Ar gas.

  • PDF

A study on the manufacturing of super precision multilayer cermet thin film resistor (초정밀 다층 Cermet 박막저항체 제조에 관한 연구)

  • 허명수;최승우;천희곤;권식철;이건환;조동율
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.77-84
    • /
    • 1997
  • Super precision resistor was manufactured by controlling properly the thickness of $TaN_{0.1}$ (negative TCR) and Cr(positive TCR) deposited on cylindrical alumina substrate (diameter: 4 mm, length: 11 mm). Multilayer thin film resistor of $Ta_2O_5/TaN_{0.1}$/Cr/Alumina (substrate) was manufactured by depositing of $Ta_2N_5$ film on $TaN_{0.1}$ film to increase Rs to the level of 1;k{\Omega}/{\box}$ and to passivate the film. Super precision resistor with TCR of $20\pm5 ppm/^{\circ}C$ and Rs of $1\;k{\Omega}/{\box}$ was manufactured by depositing thin layers of about 10 nm $Ta_2O_5$, 100 nm $TaN_{0.1}$ and 50 nm Cr film under the properly controlled sputtering condition.

  • PDF

Fabrication of tantalum nitride thin film strain gauges and its characteristics (Ta-N 스트레인 게이지의 제작과 그 특성)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.376-377
    • /
    • 2006
  • This paper presents the characteristics of Ta-N thin film strain gauges that are suitable for harsh environemts, which were deposited on thermally oxidized Si substrates by DC reactive magnetronsputtering in an argon-nitrogen atmosphere (Ar-$N_2$ (4 ~ 16 %)). These films were annealed for 1 hr in $2{\times}10^{-6}$ Torr in a vacuum furnace with temperatures that ranged from 500 - $1000^{\circ}C$. The optimized deposition and annealing conditions of the Ta-N thin film strain gauges were determined using 8 % $N_2$ gas flow ratio and annealing at $900^{\circ}C$ for 1 hr. Under optimum formation conditions, the Ta-N thin film strain gauges obtained a high electrical resistivity, ${\rho}\;=\;768.93\;{\mu}{\Omega}{\cdot}cm$, a low temperature coefficient of resistance, $TCR\;=\;-84\;ppm/^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=4.12. The fabricated Ta-N thin film strain gauges are expected to be used inmicromachined pressure sensors and load cells that are operable under harsh environments.

  • PDF

Thermal and Adhesive Properties of Cu Interconnect Deposited by Electroless Plating (무전해도금 구리배선재료의 열적 및 접착 특성)

  • 김정식;허은광
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.100-103
    • /
    • 2001
  • In this study, the adhesion and thermal property of the electroless-deposited Cu thin film were investigated. The multilayered structure of Cu/TaN/Si was fabricated by electroless-depositing the Cu thin layer on the TaN diffusion barrier which was deposited by MOCVD on the Si substrate. The thermal stability was investigated by measuring the resistivity as post-annealing temperature far the multilayered Cu/TaN/Si specimen which was annealed at Ar gas. The adhesion property of Cu 171ms was evaluated by the scratch test. The adhesion of the electroless-deposited Cu film was compared with other deposition methods of thermal evaporation and sputtering. The scratch test showed that the adhesion of electroless plated Cu film on TaN was better than those of sputtered Cu film and evaporated Cu film.

  • PDF

Study on the Thermal Properties of the Electroless Copper Interconnect in Integrated Circuits (집적회로용 무전해도금 Cu배선재료의 열적 특성에 관한 연구)

  • 김정식;이은주
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • In this study, the thermal property and adhesion of the electroless-deposited Cu thin film were investigated. The multilayered structure of Cu /TaN /Si was fabricated by electroless-depositing the Cu thin layer on the TaN diffusion barrier which was deposited by MOCVD on the Si substrate. The thermal stability was investigated by measuring the resistivity as post-annealing temperature for the multilayered Cu /TaN /Si specimen which was annealed at atmospheres of $H_2$and Ar gases, respectively. The adhesion strength of Cu films was evaluated by the scratch test. The adhesion of the electroless-deposited Cu film was compared with other deposition methods of thermal evaporation and sputtering. The scratch test showed that the adhesion of electroless plated Cu film on TaN was better than that of sputtered Cu film and evaporated Cu film.

  • PDF

Development of Plasma Assisted ALD equipment and electrical characteristic of TaN thin film deposited PAALD method (Plasma Assisted ALD 장비 계발과 PAALD법으로 증착 된 TaN 박막의 전기적 특성)

  • Do Kwan-Woo;kim Kyoung-Min;Yang Chung-Mo;Park Seong-Guen;Na Kyoung-Il;Lee Jung-Hee;Lee Jong-Hyun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.139-145
    • /
    • 2005
  • In the study, in order to deposit TaN thin film using diffusion barrier and bottom electrode we made the Plasma Assisted ALD equipment and confirmed the electrical characteristic of TaN thin films deposited PAALD method, PAALD equipment depositing TaN thin film using PEMAT(pentakis(ethylmethlyamlno) tantalum) Precursor and $NH_3$ reaction gas is aware that TaN thin film deposited of high density and amorphous phase with XRD measurement The degree of diffusion and react ion taking place in Cu/TaN(deposited using 150 W PAALD)/$SiO_2$/Si systems with increasing annealing temperature was estimated from MOS capacitor property and the $SiO_2(600\;\AA)$/Si system surface analysis by C-V measurement and secondary ion material spectrometer(SIMS) after Cu/TaN/$SiO_2(400\;\AA)$ system etching. TaN thin film deposited PAALD method diffusion barrier have a good diffusion barrier property up to $500^{\circ}C$.

  • PDF

Development of Plasma Assisted ALD equipment and Electrical Characteristic of TaN thin film deposited PAALD method (Plasma Assisted ALD 장비 계발과 PAALD법으로 증착 된 TaN 박막의 전기적 특성)

  • Do Kwan Woo;Kim Kyoung Min;Yang Chung Mo;Park Seong Guen;Na Kyoung Il;Lee Jung Hee;Lee Jong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.39-43
    • /
    • 2005
  • In the study, in order to deposit TaN thin film for diffusion barrier and bottom electrode we made the Plasma Assisted ALD equipment and confirmed the electrical characteristics of TaN thin films grown PAALD method. Plasma Assisted ALD equipment depositing TaN thin film using PEMAT(pentakis(ethylmethlyamino) tantalum) precursor and NH3 reaction gas is shown that TaN thin film deposited high density and amorphous phase with XRD measurement. The degree of diffusion and reaction taking place in Cu/TaN (deposited using 150W PAALD)/$SiO_{2}$/Si systems with increasing annealing temperature was estimated for MOS capacitor property and the $SiO_{2}$, (600${\AA}$)/Si system surface analysis by C-V measurement and secondary ion material spectrometer (SIMS) after Cu/TaN/$SiO_{2}$ (400 ${\AA}$) layer etching. TaN thin film deposited PAALD method diffusion barrier have a good diffusion barrier property up to 500$^{\circ}C$.

  • PDF

Transport properties of polycrystalline TaNx thin films prepared by DC reactive magnetron sputtering method

  • Hwang, Tae Jong;Jung, Soon-Gil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • We have investigated the electrical transport properties of polycrystalline tantalum nitride (TaNx) films. Various compositions of tantalum (nitride) thin films have been deposited on SiO2 substrates by reactive DC magnetron sputtering while changing the ratio of nitrogen partial pressure. The substrate temperature was maintained at 283 K during deposition. X-ray diffraction analyses indicated the presence of α-Ta and β-Ta phases in the Ta film deposited in pure argon atmosphere, while fcc-TaNx phases appeared in the sputtering gas mixture of argon and nitrogen. The N/Ta atomic ratio in the film increased ranging from 0.36 to 1.07 for nitrogen partial pressure from 7 to 20.7%. The superconducting transition temperatures of the TaNx thin films were measured to be greater than 3.86 K with a maximum of 5.34 K. The electrical resistivity of TaNx thin film was in the range of 177-577 𝜇Ωcm and increased with an increase in nitrogen content. The upper critical filed at zero temperature for a TaN0.87 thin film was estimated to exceed 11.3 T, while it showed the lowest Tc = 3.86 K among the measured superconducting TaNx thin films. We try to explain the behavior of the increase of the residual resistivity and the upper critical field for TaNx thin films with the nitrogen content by using the combined role of the intergrain Coulomb effect and disorder effect by grain boundaries.

Formation of ultra-thin $Ta_{2}O_{5}$ film on thermal silicon nitrides (열적 성장된 실리콘 질화막위에 산화 탄탈륨 초박막의 형성)

  • 이재성;류창명;강신원;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.35-43
    • /
    • 1995
  • To obtain high quality of $Ta_{2}O_{5}$ film, two dielectric layers of $Si_{3}N_{4}$ and $Ta_{2}O_{5}$ were subsequently formed on Si wafer. Silicon nitride films were thermally grown in 10 Torr ammonia ambient by R.F induced heating system. The thickness of thermally grown $Si_{3}N_{4}$ film was able to be controlled in the range of tens $\AA$ due to the self-limited growth property. $Ta_{2}O_{5}$ film of 200$\AA$ thickness was then deposited on the as-grown $Si_{3}N_{4}$ film about 25$\AA$ thickness by sputtering method and annealed at $900^{\circ}C$in $O_{2}$ ambient for 1hr. Stoichiometry film was prepared by the annealing in oxygen ambient. Despite the high temperature anneal process, silicon oxide layer was not grown at the interface of the layered films because of the oxidation barrier effect of Si$_{3}$N$_{4}$ film. The fabricated $Ta_{2}O_{5}$/$Si_{3}N_{4}$ film showed low leakage current less than several nA and high dielectric breakdown strength.

  • PDF

Chemical vapor deposition of $TaC_xN_y$ films using tert-butylimido tris-diethylamido tantalum(TBTDET) : Reaction mechanism and film characteristics

  • Kim, Suk-Hoon;Rhee, Shi-Woo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • Tantalum carbo-nitride($T_aC_xN_y$) films were deposited with chemical vapor deposition(CVD) using tert-butylimido tris-diethylamido tantalum (TBTDET, $^tBu-N=Ta-(NEt_2)_3$, $Et=C_2H_5$, $^tBu=C(CH_3)_3$) between $350^{\circ}C$ and $600^{\circ}C$ with argon as a carrier gas. Fourier transform infrared (FT-IR)spectroscopy was used to study the thermal decomposition behavior of TBTDET in the gas phase. When the temperature was increased, C-H and C-N bonding of TBTDET disappeared and the peaks of ethylene appeared above $450^{\circ}C$ in the gas phase. The growth rate and film density of $T_aC_xN_y$ film were in the range of 0.1nm/min to 1.30nm/min and of $8.92g/cm^3$ to $10.6g/cm^3$ depending on the deposition temperature. $T_aC_xN_y$ films deposited below $400^{\circ}C$ were amorphous and became polycrystal line above $500^{\circ}C$. It was confirmed that the $T_aC_xN_y$ film was a mixture of TaC, graphite, $Ta_3N_5$, TaN, and $Ta_2O_5$ phases and the oxide phase was formed from the post deposition oxygen uptake. With the increase of the deposition temperature, the TaN phase was increased over TaC and $Ta_3N_5$ and crystallinity, work function, conductivity and density of the film were increased. Also the oxygen uptake was decreased due to the increase of the film density. With the increase of the TaC phase in $T_aC_xN_y$ film, the work function was decreased to 4.25eV and with the increase of the TaN phase in $T_aC_xN_y$ film,it was increased to 4.48eV.

  • PDF