• Title/Summary/Keyword: TS fuzzy

Search Result 126, Processing Time 0.025 seconds

Control of Dynamical Systems: An Intelligent Approach

  • Ammar, Soukkou;Khellaf, Abdelhafid;Leulmi, Salah;Grimes, Mourad
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.583-595
    • /
    • 2008
  • In this paper, we introduce a fuzzy nonlinear feedback approach to the control of a class of chaotic dynamical systems. The fuzzy Parallel Distributed Compensation with Reduced Rule Base approach (PDC_RRB) is proposed. The design procedure is conceptually simple and considered to a nonlinear optimal and robust control problem due to the nonlinear nature of the Takagi-Sugeno (TS) fuzzy system. Simulation results are provided to show the effictiveness of the proposed methodology.

Design Robust Fuzzy Model-Based Controller for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 강인한 퍼지 모델 기반 제어기)

  • Joo, Young-Hoon;Chang, Wook;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.407-414
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex uncertain single-input single-output nonlinear systems. The proposed method represents the nonlinear system using a Takagi-Cugeno fuzzy model and construct a global fuzzy logic controller by blending all local state feedback controllers with a sliding mode controller. Unlike the commonly used parallel distributed compensation technique, we can design a global stable fuzzy controller without finding a common Lyapunov function for all local control systems, and can obtain good tracking performance by using sliding mode control theory. Furthermore, stability analysis is carried out not for the fuzzy model but for the real nonlinear system with uncertainties. Duffing forced oscillation sysmte is used as an example to show the effectiveness and feasibility of the proposed method.

  • PDF

Fuzzy Time Series Forecasting with Model Selection by using Rough Set (러프집합을 이용한 모델선택을 갖는 퍼지 시계열 예측)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1547-1548
    • /
    • 2008
  • 본 논문에서는 유동적 비정상 시계열의 패턴과 규칙성을 잘 반영할 수 있는 최적의 차분 간격 후보군을 이용한 TS 퍼지 모델로 다중 퍼지 모델을 구현하였고, 각각의 모델들의 예측 특성을 반영하기 위하여 러프집합을 이용한 모델선택법을 제안하였다. 또한 TS퍼지 모델의 파라미터 식별에는 적절한 오차보정 메커니즘을 추가하여 더욱 예측 성능을 향상 시켰다.

  • PDF

Robust Digital Fuzzy Controller Design for Load-Frequency Control of Nonlinear Power System (비선형 전력계통 시스템의 부하주파수 제어를 위한 강인한 디지탈 퍼지 제어기의 설계)

  • Jeon, Sang-Won;Joo, Young-Hoon;Lee, Ho-Jae;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.110-112
    • /
    • 2000
  • A new robust digital fuzzy controller design methodology is proposed for load frequency of nonlinear power system with valve position limits of governor in the presence of parametric uncertainties. The Takagi-Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the nonlinear power system. A sufficient condition of robust stability for robust fuzzy control with parametric uncertainties is presented in the sense of Lyapunov. The controller that designed by preposed robust fuzzy controller design method is based compounding condition between continues system and discrete system. The effectiveness of controller that designed by the proposed robust fuzzy controller design method is demonstrated through simulation example.

  • PDF

Optimal Intelligent Digital Redesign for a Class of Fuzzy-Model-Based Controllers

  • Chang-wook;Joo, Young-hoon;Park, Jin-bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.113-118
    • /
    • 2001
  • In this paper, we develop an optimal intelligent digital redesign method for a class of fuzzy-model-based controllers, effective for stabilization of continuous-time complex nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to extend the results of the classical digital redesign technique to complex nonlinear systems. Unlike the conventional intelligent digital redesign technique reported in the literature, the proposed method utilized the recently developed LMI optimization technique to obtain a digitally redesigned fuzzy-model-based controller. Precisely speaking, the intelligent digital redesign problem is converted to an equivalent optimization problem, and the LMI optimization method is used to find the digitally redesigned fuzzy-model-based controller. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

Intelligent Digitally Redesigned Fuzzy Controller

  • Joo, Young-Hoon;Lee, Yeun-Woo;Cha, Dai-Bum;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.220-226
    • /
    • 2002
  • In this paper, we develop the intelligent digitally redesigned fuzzy controller for nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to model the nonlinear systems and a continuous-time fuzzy-model-based controller is designed based on the extended parallel-distributed-compensation(EPDC) method . The digital controllers are determined from existing analogue controllers. The proposed method provides an accurate and effective method for digital control of continuous-time nonlinear systems and enables us to efficiently implement a digital controller via the pre-determined continuous-time 75 fuzzy-model-based controller. We have applied the proposed method to the duffing forced oscillation system to show the effectiveness and feasibility of the proposed method.

LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems (LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석)

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.582-589
    • /
    • 2003
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included Un the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Robust Fuzzy Controller for Active Magnetic Bearing System with 6-DOF (6 자유도를 갖는 능동 자기베어링 시스템의 강인 퍼지 제어기)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • This paper propose the implementation of robust fuzzy controller for controlling an active magnetic bearing (AMB) system with 6 degree of freedom (DOF). A basic model with 6 DOF rotor dynamics and electromagnetic force equations for conical magnetic bearings is proposed. The developed model has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving this problem, we use the Takagi-Sugeno (T-S) fuzzy model which is suitable for designing fuzzy controller. The control object in the AMB system enables the rotor to rotate without any phsical contact by using magnetic force. In this paper, we analyze the nonlinearity of the active magnetic bearing system by using fuzzy control algorithm and desing the robust control algorithm for solving the parameter variation. Simulation results for AMB are demonstrated to visualize the feasibility of the proposed method.

Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization Programming

  • Lee Jongbae;Park Chang-Woo;Sung Ha-Gyeong;Lim Joonhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.225-235
    • /
    • 2005
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included in the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

A model reference adaptive fuzzy control for MIMO Takagi-Sugeno fuzzy model (MIMO Takagi-Sugeno 퍼지 모델을 위한 모델참조 적응 퍼지 제어기의 설계)

  • Cho, Young-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.130-135
    • /
    • 2007
  • In this paper, a direct model reference adaptive fuzzy control (MRAFC) scheme is developed for the plant model whose structure is represented by the MIMO Takagi-Sugeno fuzzy model. The MRAFC scheme is proposed to provide asymptotic tracking of a reference signal lot the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee that all signals in the closed-loop system are bounded. In addition, the plant state tracks the state of the reference model asymptotically with time tot any bounded reference input signal.