• 제목/요약/키워드: TORSION

검색결과 1,215건 처리시간 0.023초

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.

토션바 중력보상기를 적용한 하지용 외골격 장치 실험연구 (Experimental Study of a lower body exoskeleton applying a torsion bar gravity compensator)

  • 최형식;이동준;윤종수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 후기공동학술대회 논문집
    • /
    • pp.97-98
    • /
    • 2011
  • This paper is about the study of a new exo-skeleton device applying a gravity compensator. The exo-skeleton devices is to reduce the external torque applied to the human body joint for the purpose of helping the disabled, reducing heavy payload for industry workers or military soldiers. Most of the exoskeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, an exoskeleton device using a new gravity compensator based on a torsion bar is proposed to reduce the torque load applied to human body joints. The exoskeleton device is designed for the lower body of human. Analyses on the torsion bar spring and link of the exoskeleton device using FEM method were performed. To reduce the applied torque to the human joint, a torsion bar gravity compensator is applied to the exoskeleton. The effect of the torsion bar compensator for the exoskeleton device was verified through load test using developed test equipment.

  • PDF

Wind Load Combinations Including Torsion for Rectangular Medium-rise Buildings

  • Stathopoulos, T.;Elsharawy, M.;Galal, K.
    • 국제초고층학회논문집
    • /
    • 제2권3호
    • /
    • pp.245-255
    • /
    • 2013
  • This paper presents the results of a set of wind tunnel tests carried out to examine wind-induced overall structural loads on rectangular medium-rise buildings. Emphasis was directed towards torsion and its correlation with peak shear forces in transverse and longitudinal directions. Two building models with the same horizontal dimensions but different gabled-roof angles ($0^{\circ}C$ and $45^{\circ}C$) were tested at different full-scale equivalent eave heights (20, 30, 40, 50, and 60 m) in open terrain exposure for all wind directions (every $15^{\circ}C$). Wind-induced pressures were integrated over building surfaces and results were obtained for along-wind force, across-wind force, and torsional moment. Maximum wind force component was given along with the other simultaneously-observed wind force components normalized by the overall peak. The study found that for flat-roofed buildings maximum torsion for winds in transverse direction is associated with 80% of the overall shear force perpendicular to the longer horizontal building dimension; and 45% of the maximum shear occurs perpendicular to the smaller horizontal building dimension. Comparison of the wind tunnel results with current torsion provisions in the American wind standard, the Canadian and European wind codes demonstrate significant discrepancies. Suggested load combination factors were introduced aiming at an adequate evaluation of wind load effects on rectangular medium-rise buildings.

Correlation of wind load combinations including torsion on medium-rise buildings

  • Keast, D.C.;Barbagallo, A.;Wood, G.S.
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.423-439
    • /
    • 2012
  • Three common medium- rise building forms were physically tested to study their overall wind induced structural response. Emphasis was placed on the torsional response and its correlation with other peak responses. A higher correlation was found between the peak responses than between the general fluctuating parts of the signals. This suggests a common mechanism causing the peak event, and that this mechanism is potentially different to the mechanism causing the general load fluctuations. The measurements show that about 80% of the peak overall torsion occur simultaneously with the peak overall along wind drag for some generic building shapes. However, the peak torsional response occurs simultaneously with only 30%-40% of the peak overall drag for the rectangular model. These results emphasise the importance of load combinations for building design, which are often neglected in the design of medium sized rigid buildings for which the along-wind drag is dominant. Current design wind loading standards from around the world were evaluated against the results to establish their adequacy for building design incorporating wind-induced torsion effects. Although torsion is frequently neglected, for some structural systems it may become more important.

Ti-6Al-4V합금의 비틀림 및 압축변형에 따른 고온변형거동 고찰 (Investigation of High Temperature Deformation Behavior in Compression and Torsion of Ti-6Al-4V Alloy)

  • 염종택;정은정;김정한;홍재근;박노광;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.435-438
    • /
    • 2008
  • High temperature deformation of Ti-6Al-4V alloy with a lamellar colony microstructure was investigated by hot compression and torsion tests. The torsion and compression tests were carried out under a wide range of temperatures and strain rates with true strain up to 2 and 0.7, respectively. The processing maps were generated on the basis of compression and torsion test data and using the principles of dynamic materials modeling (DMM). The shapes of the strain-stress curves in alpha-beta region and processing maps obtained on the two different tests have been compared with a view to evaluate the effect of the microstructure evolution on the flow softening behavior of Ti-6Al-4V alloy with a lamellar colony microstructure.

  • PDF

Nonlinear model to predict the torsional response of U-shaped thin-walled RC members

  • Chen, Shenggang;Ye, Yinghua;Guo, Quanquan;Cheng, Shaohong;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1039-1061
    • /
    • 2016
  • Based on Vlasov's torsional theory of open thin-walled members and the nonlinear constitutive relations of materials, a nonlinear analysis model to predict response of open thin-walled RC members subjected to pure torsion is proposed in the current study. The variation of the circulatory torsional stiffness and warping torsional stiffness over the entire loading process and the impact of warping shear deformation on the torsion-induced rotation of the member are considered in the formulation. The torque equilibrium differential equation is then solved by Runge-Kutta method. The proposed nonlinear model is then applied to predict the behavior of five U-shaped thin-walled RC members under pure torsion. Four of them were tested in an earlier experimental study by the authors and the testing data of the fifth one were reported in an existing literature. Results show that the analytical predictions based on the proposed model agree well with the experimental data of all five specimens. This clearly shows the validity of the proposed nonlinear model analyzing behavior of U-shaped thin-walled RC members under pure torsion.

계류 고환염전으로 오인된 드문 형태의 고환 림프종: 증례 보고 (Unusual Presentation of a Testicular Lymphoma Mimicking a Missed Testicular Torsion: A Case Report)

  • 김미진;이영환;김유리
    • 대한영상의학회지
    • /
    • 제82권5호
    • /
    • pp.1287-1291
    • /
    • 2021
  • 고환 림프종은 무통성 종괴를 주소로 내원하는 드문 고환 종양이다. 일반적으로 고환 림프종은 칼라 도플러 초음파에서 고혈관성을 보이며, 컴퓨터단층촬영이나 자기공명영상에서 조영증강을 보인다. 저자들은 우측 고환 종대를 주소로 내원한 67세 환자에서 초음파 검사상 크기가 커진 고환 내 혈류가 보이지 않아 계류염전으로 진단하였으나, 전산화단층촬영에서는 주변부에 일부 조영증강을 보이는 종괴로 관찰되었고, 수술 이후 림프종이 진단된 증례를 경험하여 보고하고자 한다.

A FAMILY OF CHARACTERISTIC CONNECTIONS

  • Kim, Hwajeong
    • 충청수학회지
    • /
    • 제26권4호
    • /
    • pp.843-852
    • /
    • 2013
  • The characteristic connection is a good substitute for Levi-Civita connection in studying non-integrable geometries. In this paper we consider the homogeneous space $U(3)/(U(1){\times}U(1){\times}U(1))$ with a one-parameter family of Hermitian structures. We prove that the one-parameter family of Hermtian structures admit a characteristic connection. We also compute the torsion of the characteristic connecitons.

FINITELY GENERATED PROJECTIVE MODULES OVER NOETHERIAN RINGS

  • LEE, SANG CHEOL;KIM, SUNAH
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.499-511
    • /
    • 2006
  • It is well-known that every finitely generated torsion-free module over a principal ideal domain is free. This will be generalized. We deal with ideals of the finite, external direct product of certain rings. Finally, if M is a torsion-free, finitely generated module over a reduced, Noetherian ring A, then we prove that Ms is a projective module over As, where $S=A{\setminus}(A)$.

  • PDF