References
- I. Agricola, Differential Geometry III, Lecture given in 2007.
- I. Agricola, The Srni lectures on non-integrable geometries with torsion, Arch. Math. Brno (2006), 5-84. With an appendix by M. Kassuba.
- I. Agricola, J. Bercker-bender, and H. Kim, Twistorial eigenvalue estimates for generalized Dirac operators with torsion, Adv. Math. 243 (2013), 296-329. https://doi.org/10.1016/j.aim.2013.05.001
- I. Agricola and H. Kim, A note on generalized Dirac eigenvalues for split ho-lonomy and torsion, preprint, 2013.
- D. Chinea and G. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15-36. https://doi.org/10.1007/BF01766972
-
M. Fernandez and A. Gray, Riemannian manifolds with structure Group
$G_{2}$ , Ann. Mat. Pura Appl. 132 (1982), 19-45. https://doi.org/10.1007/BF01760975 - Th. Friedrich, On types of non-integrable geometries, REnd. Circ. Mat. Palermo (2) Suppl. 71 (2003), 99-113.
- Th. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian Journ. Math. 6 (2002), 303-336. https://doi.org/10.4310/AJM.2002.v6.n2.a5
- A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-28. https://doi.org/10.1007/BF01796539
- M. Kassuba, Eigenvalue estimates for Dirac operators in geometries with torsion, Ann. Glob. Anal. Geom. 37 (2010), 33-71. https://doi.org/10.1007/s10455-009-9172-x
- E. C. Kim, Eigenvalue Estimates for Generalized Dirac operators on Sasakian manifolds, To appear in Ann. Glob. Anal. Geom., available online DOI 10.1007/s 10455-013-9388-7.
- H. Kim, The torsion of the characteristic connection, Journal of the Chungcheong Mathematical Society, 25 (2012), no. 4, 599-608. https://doi.org/10.14403/jcms.2012.25.4.599
- S. Kobayashi and K. Nomizu, Foundations of differential geometry II, Wiley Inc., Princeton, 1969.