DOI QR코드

DOI QR Code

A FAMILY OF CHARACTERISTIC CONNECTIONS

  • Received : 2013.09.03
  • Accepted : 2013.10.11
  • Published : 2013.11.15

Abstract

The characteristic connection is a good substitute for Levi-Civita connection in studying non-integrable geometries. In this paper we consider the homogeneous space $U(3)/(U(1){\times}U(1){\times}U(1))$ with a one-parameter family of Hermitian structures. We prove that the one-parameter family of Hermtian structures admit a characteristic connection. We also compute the torsion of the characteristic connecitons.

Keywords

References

  1. I. Agricola, Differential Geometry III, Lecture given in 2007.
  2. I. Agricola, The Srni lectures on non-integrable geometries with torsion, Arch. Math. Brno (2006), 5-84. With an appendix by M. Kassuba.
  3. I. Agricola, J. Bercker-bender, and H. Kim, Twistorial eigenvalue estimates for generalized Dirac operators with torsion, Adv. Math. 243 (2013), 296-329. https://doi.org/10.1016/j.aim.2013.05.001
  4. I. Agricola and H. Kim, A note on generalized Dirac eigenvalues for split ho-lonomy and torsion, preprint, 2013.
  5. D. Chinea and G. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15-36. https://doi.org/10.1007/BF01766972
  6. M. Fernandez and A. Gray, Riemannian manifolds with structure Group $G_{2}$, Ann. Mat. Pura Appl. 132 (1982), 19-45. https://doi.org/10.1007/BF01760975
  7. Th. Friedrich, On types of non-integrable geometries, REnd. Circ. Mat. Palermo (2) Suppl. 71 (2003), 99-113.
  8. Th. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian Journ. Math. 6 (2002), 303-336. https://doi.org/10.4310/AJM.2002.v6.n2.a5
  9. A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-28. https://doi.org/10.1007/BF01796539
  10. M. Kassuba, Eigenvalue estimates for Dirac operators in geometries with torsion, Ann. Glob. Anal. Geom. 37 (2010), 33-71. https://doi.org/10.1007/s10455-009-9172-x
  11. E. C. Kim, Eigenvalue Estimates for Generalized Dirac operators on Sasakian manifolds, To appear in Ann. Glob. Anal. Geom., available online DOI 10.1007/s 10455-013-9388-7.
  12. H. Kim, The torsion of the characteristic connection, Journal of the Chungcheong Mathematical Society, 25 (2012), no. 4, 599-608. https://doi.org/10.14403/jcms.2012.25.4.599
  13. S. Kobayashi and K. Nomizu, Foundations of differential geometry II, Wiley Inc., Princeton, 1969.