DOI QR코드

DOI QR Code

UNIFORM LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED DIFFERENTIAL SYSTEMS

  • Goo, Yoon Hoe (Department of Mathematics Hanseo University) ;
  • Cui, Yinhua (Department of Mathematics Hanseo University)
  • Received : 2013.09.02
  • Accepted : 2013.10.11
  • Published : 2013.11.15

Abstract

In this paper, we investigate uniform Lipschitz and asymptotic stability for perturbed differential systems using integral inequalities.

Keywords

References

  1. V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).
  2. F. Brauer and A. Strauss, Perturbation of nonlinear systems of differential equations, III, J. Math. Anal. Appl. 31 (1970), 37-48. https://doi.org/10.1016/0022-247X(70)90118-6
  3. F. Brauer, Perturbation of nonlinear systems of differential equations, IV, J. Math. Anal. Appl. 37 (1972), 214-222. https://doi.org/10.1016/0022-247X(72)90269-7
  4. S. K. Choi and N. J. Koo, h-stability for nonlinear perturbed systems, Ann. of Diff. Eqs. 11 (1995), 1-9.
  5. S. K. Choi, Y. H. Goo, and N. J. Koo, Lipschitz and exponential asymptotic stability for nonlinear functional systems, Dynamic Systems and Applications 6 (1997), 397-410.
  6. S. K. Choi, N. J. Koo, and S. M. Song, Lipschitz stability for nonlinear functional differential systems, Far East J. Math. Sci(FJMS)I 5 (1999), 689-708.
  7. F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differential systems, J. Math. Anal. Appl. 113 (1986), 562-577. https://doi.org/10.1016/0022-247X(86)90325-2
  8. S. Elaydi and H. R. Farran, Exponentially asymptotically stable dynamical sys-tems, Appl. Appl. 25 (1987), 243-252.
  9. P. Gonzalez and M. Pinto, Stability properties of the solutions of the nonlinear functional differential systems, J. Math. Appl. 181 (1994), 562-573.
  10. Y. H. Goo and S. B. Yang, h-stability of the nonlinear perturbed differential systems via $t_{\infty}$-similarity, J. Chungcheong Math. Soc. 24 (2011), 695-702.
  11. Y. H. Goo and S. B. Yang, h-stability of nonlinear perturbed differential systems via $t_{\infty}$-similarity, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 19 (2012), 171-177. https://doi.org/10.7468/jksmeb.2012.19.2.171
  12. Y. H. Goo, Boundedness in the perturbed differential systems, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 20 (2013), 223-232. https://doi.org/10.7468/jksmeb.2013.20.3.223
  13. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications Vol., Academic Press, New York and London, 1969.
  14. B. G. Pachpatte, A note on Gronwall-Bellman inequality, J. Math. Anal. Appl. 44 (1973), 758-762. https://doi.org/10.1016/0022-247X(73)90014-0
  15. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis, 4 (1984), 161-175.
  16. M. Pinto, Integral inequalities of Bihari-type and applications, Funkcial. Ekvac., 33 (1990), 387-404.
  17. M. Pinto, Variationally stable differential system, J. Math. Anal. Appl. 151 (1990), 254-260. https://doi.org/10.1016/0022-247X(90)90255-E

Cited by

  1. UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS vol.24, pp.1, 2016, https://doi.org/10.11568/kjm.2016.24.1.1
  2. UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC BEHAVIOR OF PERTURBED DIFFERENTIAL SYSTEMS vol.29, pp.3, 2016, https://doi.org/10.14403/jcms.2016.29.3.429
  3. ASYMPTOTIC PROPERTY FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS vol.29, pp.1, 2016, https://doi.org/10.14403/jcms.2016.29.1.1
  4. LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS vol.22, pp.1, 2015, https://doi.org/10.7468/jksmeb.2015.22.1.1
  5. ASYMPTOTIC PROPERTY OF PERTURBED NONLINEAR SYSTEMS vol.30, pp.1, 2013, https://doi.org/10.14403/jcms.2017.30.1.103