References
- V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).
- F. Brauer and A. Strauss, Perturbation of nonlinear systems of differential equations, III, J. Math. Anal. Appl. 31 (1970), 37-48. https://doi.org/10.1016/0022-247X(70)90118-6
- F. Brauer, Perturbation of nonlinear systems of differential equations, IV, J. Math. Anal. Appl. 37 (1972), 214-222. https://doi.org/10.1016/0022-247X(72)90269-7
- S. K. Choi and N. J. Koo, h-stability for nonlinear perturbed systems, Ann. of Diff. Eqs. 11 (1995), 1-9.
- S. K. Choi, Y. H. Goo, and N. J. Koo, Lipschitz and exponential asymptotic stability for nonlinear functional systems, Dynamic Systems and Applications 6 (1997), 397-410.
- S. K. Choi, N. J. Koo, and S. M. Song, Lipschitz stability for nonlinear functional differential systems, Far East J. Math. Sci(FJMS)I 5 (1999), 689-708.
- F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differential systems, J. Math. Anal. Appl. 113 (1986), 562-577. https://doi.org/10.1016/0022-247X(86)90325-2
- S. Elaydi and H. R. Farran, Exponentially asymptotically stable dynamical sys-tems, Appl. Appl. 25 (1987), 243-252.
- P. Gonzalez and M. Pinto, Stability properties of the solutions of the nonlinear functional differential systems, J. Math. Appl. 181 (1994), 562-573.
-
Y. H. Goo and S. B. Yang, h-stability of the nonlinear perturbed differential systems via
$t_{\infty}$ -similarity, J. Chungcheong Math. Soc. 24 (2011), 695-702. -
Y. H. Goo and S. B. Yang, h-stability of nonlinear perturbed differential systems via
$t_{\infty}$ -similarity, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 19 (2012), 171-177. https://doi.org/10.7468/jksmeb.2012.19.2.171 - Y. H. Goo, Boundedness in the perturbed differential systems, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 20 (2013), 223-232. https://doi.org/10.7468/jksmeb.2013.20.3.223
- V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications Vol., Academic Press, New York and London, 1969.
- B. G. Pachpatte, A note on Gronwall-Bellman inequality, J. Math. Anal. Appl. 44 (1973), 758-762. https://doi.org/10.1016/0022-247X(73)90014-0
- M. Pinto, Perturbations of asymptotically stable differential systems, Analysis, 4 (1984), 161-175.
- M. Pinto, Integral inequalities of Bihari-type and applications, Funkcial. Ekvac., 33 (1990), 387-404.
- M. Pinto, Variationally stable differential system, J. Math. Anal. Appl. 151 (1990), 254-260. https://doi.org/10.1016/0022-247X(90)90255-E
Cited by
- UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS vol.24, pp.1, 2016, https://doi.org/10.11568/kjm.2016.24.1.1
- UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC BEHAVIOR OF PERTURBED DIFFERENTIAL SYSTEMS vol.29, pp.3, 2016, https://doi.org/10.14403/jcms.2016.29.3.429
- ASYMPTOTIC PROPERTY FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS vol.29, pp.1, 2016, https://doi.org/10.14403/jcms.2016.29.1.1
- LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS vol.22, pp.1, 2015, https://doi.org/10.7468/jksmeb.2015.22.1.1
- ASYMPTOTIC PROPERTY OF PERTURBED NONLINEAR SYSTEMS vol.30, pp.1, 2013, https://doi.org/10.14403/jcms.2017.30.1.103