• Title/Summary/Keyword: TFTs (Thin film transistors)

Search Result 384, Processing Time 0.029 seconds

Electrical Performance of Amorphous SiZnSnO TFTs Depending on Annealing Temperature (실리콘산화아연주석 산화물 반도체의 후열처리 온도변화에 따른 트랜지스터의 전기적 특성 연구)

  • Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.677-680
    • /
    • 2012
  • The dependency of annealing temperature on the electrical performances in amorphous silicon-zinc-tin-oxide thin film transistors (SZTO-TFT) has been investigated. The SZTO channel layers were prepared by using radio frequency (RF) magnetron sputtering method with different annealing treatment. The field effect mobility (${\mu}_{FE}$) increased and threshold voltage ($V_{th}$) shifted to negative direction with increasing annealing temperature. As a result, oxygen vacancies generated in SZTO channel layer with increasing annealing temperature resulted in negative shift in $V_{th}$ and increase in on-current.

The Optimization of the Organic Passivation Process in the TFT-LCD Panel for LCD Televisions

  • Lee, Yeong-Beom;Jun, Sahng-Ik
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.54-61
    • /
    • 2009
  • The results of the optimization of the organic passivation process for fabricating thin-film transistors (TFTs) with a high aperture ratio on a seventh-generation glass (2200${\times}$1870 mm) substrate for LCD-TV panels are reported herein. The optimization of the organic passivation process has been verified by checking various factors, including the material properties (e.g., thickness, stain, etching, thermal reflow) and the effects on the TFT operation (e.g., gate/data line delay and display-driving properties). The two main factors influencing the organic passivation process are the optimization of the final thickness of the organic passivation layer, and the gate electrode. In conclusion, the minimum possible final thickness was found to be $2.42{\um}m$ via simulation and pilot testing, using the full-factorial design. The optimization of the organic passivation layer was accomplished by improving its brightness by over 10 cd/$m^2$ (ca. 2% luminance) compared to that of the conventional organic passivation process. The results of this research also help reduce the reddish stain on display panels.

ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS USING FLEXIBLE SUBSTRATE (Flexible한 기판을 사용한 유기 박막 트랜지스터의 전기적 특성 연구)

  • Lee, Jong-Hyuk;Kang, Chang-Heon;Hong, Sung-Jin;Kwak, Yun-Hee;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1590-1592
    • /
    • 2002
  • In this work the electrical characteristics of organic TFTs using organic insulator and flexible polyester substrate have been investigated. Pentacene and PVP(polyvinylphenol) are used as an active semiconducting layer and dielectric layer respectively. Pentacene was thermally evaporated in vacuum at a pressure of about $1{\times}10^{-6}$ Torr and at a deposition rate of $0.5{\AA}$/sec, and PVP was spin-coated. Aluminium and gold were used for gate and source/drain electrodes. 0.1mm thick flexible polyester substrate was used instead of glass or silicon wafer.

  • PDF

Illumination Assisted Negative Bias Temperature Instability Degradation in Low-Temperature Polycrystalline Silicon Thin-Film Transistors

  • Lin, Chia-Sheng;Chen, Ying-Chung;Chang, Ting-Chang;Hsu, Wei-Che;Chen, Shih-Ching;Li, Hung-Wei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.550-552
    • /
    • 2009
  • The negative bias temperature instability on LTPS TFTs in a darkened and an illuminated environment was investigated. Experimental results reveal that the generation of interface state density showed no change between the different NBTI stresses. The degradation of the grain boundary trap under illumination was more significant than for the darkened environment.

  • PDF

Simulations of Pixel Characteristics for Large Size and High Qualify TFT-LCD using a new sophisticated Capacitance Formulas (새로운 정전용량 계산식물 이용한 대면적 .고화질 TFT-LCD의 화소 특성 시뮬레이션)

  • 윤영준;정순신;김태형;박재우;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.613-616
    • /
    • 1999
  • An active-matrix LCD using thin film transistors (TFTs)has been widely recognized as having potential for high-quality color flat-panel displays. Pixel-Design Array Simulation Tool (PDAST) was used to profoundly understand the gate signal distortion and pixel charging capability, which are the most critical limiting factors for high-quality TFT-LCDs. Since PDAST can simulate the gate data and pixel voltages of a certain pixel on TFT array at any time and at any location on an array, the effect of the new set of capacitance models on the pixel operations can be effectively analyzed, The set of models which is adopted from VLSI interconnections calculate more precise capacitance. The information obtained from this study could be utilized to design the larger area and finer image quality panel.

  • PDF

Fabrication and Characteristics of Zinc Oxide- and Gallium doped Zinc Oxide thin film transistor using Radio Frequency Magnetron sputtering at Room Temperature (Zinc Oxide와 갈륨이 도핑 된 Zinc Oxide를 이용하여 Radio Frequency Magnetron Sputtering 방법에 의해 상온에서 제작된 박막 트랜지스터의 특성 평가)

  • Jeon, Hoon-Ha;Verma, Ved Prakash;Noh, Kyoung-Seok;Kim, Do-Hyun;Choi, Won-Bong;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.359-365
    • /
    • 2007
  • In this paper we present a bottom-gate type of zinc oxide (ZnO) and Gallium (Ga) doped zinc oxide (GZO) based thin film transistors (TFTs) through applying a radio frequency (RF) magnetron sputtering method at room temperature. The gate leakage current can be reduced up to several ph by applying $SiO_2$ thermally grown instead of using new gate oxide materials. The root mean square (RMS) values of the ZnO and GZO film surface were measured as 1.07 nm and 1.65 nm, respectively. Also, the transmittances of the ZnO and GZO film were more than 80% and 75%, respectively, and they were changed as their film thickness. The ZnO and GZO film had a wurtzite structure that was arranged well as a (002) orientation. The ZnO TFT had a threshold voltage of 2.5 V, a field effect mobility of $0.027\;cm^2/(V{\cdot}s)$, a on/off ratio of $10^4$, a gate voltage swing of 17 V/decade and it operated in a enhancement mode. In case of the GZO TFT, it operated in a depletion mode with a threshold voltage of -3.4 V, a field effect mobility of $0.023\;cm^2/(V{\cdot}s)$, a on/off ratio of $2{\times}10^4$ and a gate voltage swing of 3.3 V/decade. We successfully demonstrated that the TFTs with the enhancement and depletion mode type can be fabricated by using pure ZnO and 1wt% Ga-doped ZnO.

Staggered and Inverted Staggered Type Organic-Inorganic Hybrid TFTs with ZnO Channel Layer Deposited by Atomic Layer Deposition

  • Gong, Su-Cheol;Ryu, Sang-Ouk;Bang, Seok-Hwan;Jung, Woo-Ho;Jeon, Hyeong-Tag;Kim, Hyun-Chul;Choi, Young-Jun;Park, Hyung-Ho;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.17-22
    • /
    • 2009
  • Two different organic-inorganic hybrid thin film transistors (OITFTs) with the structures of glass/ITO/ZnO/PMMA/Al (staggered structure) and glass/ITO/PMMA/ZnO/Al (inverted staggered structure), were fabricated and their electrical and structural properties were compared. The ZnO thin films used as active channel layers were deposited by the atomic layer deposition (ALD) method at a temperature of $100^{\circ}C$. To investigate the effect of the substrates on their properties, the ZnO films were deposited on bare glass, PMMA/glass and ITO/glass substrates and their crystal properties and surface morphologies were analyzed. The structural properties of the ZnO films varied with the substrate conditions. The ZnO film deposited on the ITO/glass substrate showed better crystallinity and morphologies, such as a higher preferred c-axis orientation, lower FWHM value and larger particle size compared with the one deposited on the PMMA/glass substrate. The field effect mobility ($\mu$), threshold voltage ($V_T$) and $I_{on/off}$ switching ratio for the OITFT with the staggered structure were about $0.61\;cm^2/V{\cdot}s$, 5.5 V and $10^2$, whereas those of the OITFT with the inverted staggered structure were found to be $0.31\;cm^2/V{\cdot}s$, 6.8 V and 10, respectively. The improved electrical properties for the staggered OITFTs may originate from the improved crystal properties and larger particle size of the ZnO active layer.

  • PDF

5-TFT OLED Pixel Circuit Compensating Threshold Voltage Variation of p-channel Poly-Si TFTs (p-채널 다결정 실리콘 박막 트랜지스터의 문턱전압 변동을 보상할 수 있는 5-TFT OLED 화소회로)

  • Chung, Hoon-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.3
    • /
    • pp.279-284
    • /
    • 2014
  • This paper proposes a novel OLED pixel circuit to compensate the threshold voltage variation of p-channel low temperature polycrystalline silicon thin-film transistors (LTPS TFTs). The proposed 5-TFT OLED pixel circuit consists of 4 switching TFTs, 1 OLED driving TFT and 1 capacitor. One frame of the proposed pixel circuit is divided into initialization period, threshold voltage sensing and data programming period, data holding period and emission period. SmartSpice simulation results show that the maximum error rate of OLED current is -4.06% when the threshold voltage of driving TFT varies by ${\pm}0.25V$ and that of OLED current is 9.74% when the threshold voltage of driving TFT varies by ${\pm}0.50V$. Thus, the proposed 5T1C pixel circuit can realize uniform OLED current with high immunity to the threshold voltage variation of p-channel poly-Si TFT.

A Voltage Programming AMOLED Pixel Circuit Compensating Threshold Voltage Variation of n-channel Poly-Si TFTs (n-채널 다결정 실리콘 박막 트랜지스터의 문턱전압 변동 보상을 위한 전압 기입 AMOLED 화소회로)

  • Chung, Hoon-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.207-212
    • /
    • 2013
  • A novel pixel circuit that uses only n-type low-temperature polycrystalline silicon (poly-Si) thin-film transistors (LTPS-TFTs) to compensate the threshold voltage variation of a OLED driving TFT is proposed. The proposed 6T1C pixel circuit consists of 5 switching TFTs, 1 OLED driving TFT and 1 capacitor. When the threshold voltage of driving TFT varies by ${\pm}0.33$ V, Smartspice simulation results show that the maximum error rate of OLED current is 7.05 % and the error rate of anode voltage of OLED is 0.07 % at Vdata = 5.75 V. Thus, the proposed 6T1C pixel circuit can realize uniform output current with high immunity to the threshold voltage variation of poly-Si TFT.

AMOLED Pixel Circuit with Electronic Compensation for Vth and Mobility Variation in LTPS TFTs (LTPS TFT의 Vth와 mobility 편차를 보상하기 위한 AMOLED 화소 회로)

  • Woo, Doo-Hyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.45-52
    • /
    • 2009
  • We proposed a new pixel circuit and driving method for the large-area, high-luminance AMOLED applications in this study. We designed with the low-temperature poly-silicon(LTPS) thin film transistors(TFTs) that has poor uniformity but stable characteristic. To improve the uniformity of an image, the threshold voltage($V_{TH}$) and the mobility of the TFTs can be compensated together. The proposed method overcomes the previous methods for mobility compensation, and that is profitable for large-area applications. Black data insertion was introduced to improve the characteristics for moving images. AMOLED panel can operate in two compensation mode, so the luminance degradation by mobility compensation can be released. The scan driver for controlling the pixel circuits were optimized, and the compensation mode can be controlled simply by that. Final driving signal has large timing margin, and the panel operates stably. The pixel circuit was designed for 14.1" WXGA top-emission ANGLED panel. The non-uniformity of the designed panel was estimated under 5% for the mobility compensation time of 1us.