• Title/Summary/Keyword: TEMPERATURE

Search Result 89,032, Processing Time 0.11 seconds

Influence of Ultrasonification on Extraction Yield and Chemical Property of Green Tea Infusion (초음파 처리가 녹차 침출액의 추출 수율 및 화학적 특성에 미치는 영향)

  • Kim, Byung-Chul;Kang, Sung-Won;Chung, Chang-Ho;Heo, Ho-Jin;Lee, Seung-Cheol;Cho, Sung-Hwan;Choi, Sung-Gil
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.91-99
    • /
    • 2010
  • The objective of this work was to investigate the influence of ultrasonification on extraction yield and chemical properties of green tea infusion. Changes in total soluble matter(TSM), vitamin C, total phenolic compounds, flavonols, catechins, caffeine, free amino acids contents in green tea infusion(GTI) influenced by ultrasonification at $60^{\circ}C$ of extraction temperature for 1, 5, 30, and 60 min were investigated. The amount of infused TSM increased about 5.3% by ultrasonification for 60min. Vitamin C contents also increased 0.21, 0.16, 0.31 mg/g from 1 to 30 min by ultrasonification. However, vitamin C decreased from 2.47 to 2.22 mg/g at 60min. Total phenol compounds contents increased about 10~13 mg/g on all extraction times by ultrasonification. Flavonols such as, myricetin, quercetin, kaempferol were increased to doubled contents as an influence of ultrasonification. Catechins such as, EGCG, EGC, ECG, EC, (+)-C and caffeine contents showed same tendency as the results of vitamin C. On the other hand, result of free amino acids showed different tendency. All amounts of free amino acids did not increase by ultrasonification. Consequently, content of bioactive compounds such as, vitamin C, total phenolic, flavonols and catechins in green tea infusion were influenced by ultrasonification.

Growth and Flowering of Cut Spray Chrysanthemum 'Charming Eye' and 'Pink Pride' by Daminozide (스프레이 절화국화 '챠밍아이'와 '핑크프라이드'의 daminozide에 의한 생육 및 개화)

  • Lee, Chang Hee
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • This study was conducted to improve commercial quality of cut spray chrysanthemums 'Charming Eye' and 'Pink Pride' bred in Korea by foliar application of daminozide, suppressing excessive elongation of peduncle caused by high temperature in greenhouse. Applications were made at two floral-bud-developmental stages and concentrations used were 0, 500, 1000, and $2000mg{\cdot}L^{-1}$. As for 'Charming Eye', cut flower length, peduncle diameter, stem diameter, flower bud diameter, and the number of flower buds did not show any significant difference among all treatments including control. However, the suppressing effect of peduncle elongation, widening angle of flower cluster arrangement on apical part, and increasing parallel flower buds in stage I showed better than those in stage II regardless of daminozide concentration. As for 'Pink Pride', cut flower length, peduncle diameter, and stem diameter did not show any significant difference among all treatments including control but angle of flower cluster on apical part increased compared to control as daminozide was sprayed at stage I and II except $2,000mg{\cdot}L^{-1}$ daminozide-sprayed at stage II. The number of flower buds and flower bud diameter showed the greatest increment through $1,000mg{\cdot}L^{-1}$ daminozide-sprayed at stage I and did the least values as sprayed with $2,000mg{\cdot}L^{-1}$ daminozide at stage II. Daminozide also gradually reduced peduncle length in a concentration-dependant manner but elongation of peduncle foliar-sprayed at stage I showed the more suppressing effect than that at stage II. Increasing the number of parallel flower buds showed the best results when sprayed with $2,000mg{\cdot}L^{-1}$ at stage I. In conclusion, we recommended that foliar spraying with $500-1,000mg{\cdot}L^{-1}$ daminozide at stage I and foliar spraying with $1,000-2,000mg{\cdot}L^{-1}$ daminozide at stage I improved cut flower quality of 'Channing Eye' and 'Pink Pride', respectively.

Prelaunch Study of Validation for the Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 자료 검정을 위한 사전연구)

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;Son, Young-Baek;Cho, Seong-Ick;Min, Jee-Eun;Yang, Chan-Su;Ahn, Yu-Hwan;Shim, Jae-Seol
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.251-262
    • /
    • 2010
  • In order to provide quantitative control of the standard products of Geostationary Ocean Color Imager (GOCI), on-board radiometric correction, atmospheric correction, and bio-optical algorithm are obtained continuously by comprehensive and consistent calibration and validation procedures. The calibration/validation for radiometric, atmospheric, and bio-optical data of GOCI uses temperature, salinity, ocean optics, fluorescence, and turbidity data sets from buoy and platform systems, and periodic oceanic environmental data. For calibration and validation of GOCI, we compared radiometric data between in-situ measurement and HyperSAS data installed in the Ieodo ocean research station, and between HyperSAS and SeaWiFS radiance. HyperSAS data were slightly different in in-situ radiance and irradiance, but they did not have spectral shift in absorption bands. Although all radiance bands measured between HyperSAS and SeaWiFS had an average 25% error, the 11% absolute error was relatively lower when atmospheric correction bands were omitted. This error is related to the SeaWiFS standard atmospheric correction process. We have to consider and improve this error rate for calibration and validation of GOCI. A reference target site around Dokdo Island was used for studying calibration and validation of GOCI. In-situ ocean- and bio-optical data were collected during August and October, 2009. Reflectance spectra around Dokdo Island showed optical characteristic of Case-1 Water. Absorption spectra of chlorophyll, suspended matter, and dissolved organic matter also showed their spectral characteristics. MODIS Aqua-derived chlorophyll-a concentration was well correlated with in-situ fluorometer value, which installed in Dokdo buoy. As we strive to solv the problems of radiometric, atmospheric, and bio-optical correction, it is important to be able to progress and improve the future quality of calibration and validation of GOCI.

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Conditions on Performance

  • Pham, Hai The;Vu, Phuong Ha;Nguyen, Thuy Thu Thi;Bui, Ha Viet Thi;Tran, Huyen Thanh Thi;Tran, Hanh My;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1607-1623
    • /
    • 2019
  • Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of $100{\Omega}$, not with the lowest one of $10{\Omega}$. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than $35^{\circ}C$ seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform non-bioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Determination of Adaptable Sowing Dates of Waxy Corn Using Growing Degree Days in the Central Northern Area of Korea (적산온도를 활용한 중북부지역 찰옥수수 적정파종기 설정)

  • Shim, Kang Bo;Lee, Jong Ki;Koo, Bon Il;Shin, Myoung Na;Yoon, Sung Tak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.269-277
    • /
    • 2019
  • It is important to determine sowing date as it decisively affects the quality as well as quantity of waxy corn. In the central northern area of Korea, optimum sowing date of waxy corn is May and requires about 20-26 reproductive growth days from silking date to harvest. We determined adaptable sowing date of waxy corn varieties using growing degree days (GDDs), especially in the central northern area. Earlier sowing required many more emergence days owing to the low temperature. All waxy corn varieties required about 16~22 emergence days when sown in April. Otherwise, less than 15 emergence days were needed for sowing from May to August. Sowing dates to maximize ear yield of waxy corns were different depending on the eco-types of corn varieties as well as GDDs during the growth period. Early maturity type Mibaek2' showed the highest ear yield at the May $15^{th}$ sowing date. Middle maturity 'Iimichal' and late maturity 'Chalok4' showed the highest ear yield at the May $25^{th}$ and June $5^{th}$ sowing dates, respectively. GDDs of 26 days after silking was an index to determine the highest yield sowing date of 'Mibaek2'. The total GDDs from sowing to harvest and to silking were other indexes to determine the highest yield sowing date of 'Ilmichal' and 'Chalok4', respectively. Generally, it required about $2,400^{\circ}C$ GDDs from sowing date to maturity and at least 65 days of silking date from sowing to obtain about 1,200kg of ear yield of waxy corn in the central northern area of the Korean peninsula. The results of the study will be helpful for corn farmhouses to determine optimum sowing date of waxy corn in the central northern area of Korea.

Effect of Fertilizer Component on Turfgrass Growth and Quality of Golf Putting Greens under Traffic Stress (답압하에서 질소, 인산, 칼륨 변화가 골프코스 그린 잔디의 생육과 품질에 미치는 영향)

  • Lee, Sung-Woo;Lee, Jae-Pil;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.137-146
    • /
    • 2007
  • Traffic causes more and more stress and injury to grasses on golf course green in Korea due to the increased playing. This study compared the effect of fertilizer component (Nitrate, Phosphate, Potassium) on turfgrass growth and quality golf course green under traffic stress during early winter. Experiment was conducted by using different fertilizer components for 2 months(Oct. 1 to Nov. 30, 2005). Turfgrass leaf color, leaf texture, density and traffic tolerance were evaluated visually, and the root length(cm) and tiller density(tiller/$cm^2$) were measured. Creeping bentgrass(Agrostis palustris cv. 'Seaside II') fromthe nursery of Incheon Grand Golf Club was used. Results of this study are as followings: 1). Turfgrass color was the best in A6(20-15-10) and A5(15-15-10) treatments in the N study. Leaf texture was not different among treatments. Turf quality and traffic tolerance were the highest In A5 and A6. Root length was the longest(15.8cm) in A6 (20-15-10). Root length increased with nitrogen levels. 2). Turf color of A9(5-7.5-5) and A10(15-22.5-15) was darkest in the comparison of P study. Leaf texture was the best in A4(10-15-10) and A9. Turf quality was the best in A10. A7(10-0-10). 3). In general, to recover turfgrass damage on the putting greens during low temperature period, fertilizer amount need to be increased; and nitrogen is better than phosphate and potassium for that purpose.

Changes in Marine Environmental Factors and Phytoplankton Community Composition Observed via Short-Term Investigation in a Harbor in the Eastern Part of the South Sea of Korea (남해동부연안항만에서 하계 단주기 조사에 따른 해양환경 및 식물플랑크톤 군집조성의 변화)

  • Lee, Minji;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.669-676
    • /
    • 2017
  • To understand the relationship between environmental factors and phytoplankton community structures and why early outbreaks of Cochlodinium polykrikoides occur in the inner bay of Korea, short-term investigations were conducted at 17 stations in the eastern part of the South Sea of Korea, with sessions every two weeks from July 7 to August 24, 2016. The water temperature increased from $22.3^{\circ}C$ in the first survey to $28.4^{\circ}C$ in the fourth survey, which was a rise of about $6.01^{\circ}C$. Salinity was relatively high at Stns. 8 13 in the inner bay. In the first survey, rainfall of about 150 mm was observed, so nutrients were supplied at a high level and a high concentrate of Chl. a was observed. Cryptophyta (Crpytomonas spp.) represented 58.3 % of the community, followed by Bacillariophyta at 33.8 %. In particular, at Stn. 5, Dinophyta Prorocentrum spp. accounted for a very high percentage, 32.2 %. In the second survey, low phytoplankton populations were observed, and Bacillariophyta (Chaetoceros spp.) accounted for 61.0 %. At Stn. 4, Skeletonema spp. showed high populations but did not appear at other stations even at a low density. In the third and fourth surveys, phytoplankton populations were very low. Bacillariophyta represented 78.0 % in the third study and 73.3 % in the fourth. Interestingly, although the appearance of C. polykrikoides was investigated at the beginning of the red tide in the coastal area, they were not observed inshore, implying that the likelihood of inflow by the germination of resting cysts was low for the inner bay during this study period. In addition, environmental characteristics such as salinity and nutrient presence were significantly different between sampling stations due to the existence of a semi-closed bay in the southern sea, resulting in dominant phytoplankton species and community composition differing in these short-term investigations.