DOI QR코드

DOI QR Code

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery

폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구

  • Joo, Soyeong (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Kang, Yubin (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Shim, Hyun-Woo (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Byun, Suk-Hyun (SungEel HiTech Co., Ltd.) ;
  • Kim, Yong Hwan (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology) ;
  • Lee, Chan-Gi (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Dae-Guen (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE))
  • 주소영 (고등기술연구원 융합소재공정센터) ;
  • 강유빈 (고등기술연구원 융합소재공정센터) ;
  • 심현우 (고등기술연구원 융합소재공정센터) ;
  • 변석현 (성일하이텍(주) 부설연구소) ;
  • 김용환 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 이찬기 (고등기술연구원 융합소재공정센터) ;
  • 김대근 (고등기술연구원 융합소재공정센터)
  • Received : 2019.08.23
  • Accepted : 2019.10.08
  • Published : 2019.10.31

Abstract

A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

금속 폐기물로부터의 유가금속 회수는 관련 원료의 수입 혹은 안정적 원료 수급을 위해서 매우 중요하다. 특히 폐리튬이차전지(LIBs)로부터 회수가 가능한 금속(Li, Co, Ni, Mn 등)의 재사용뿐만 아니라 폐리튬이차전지의 재활용 연구가 필수적이다. 폐리튬이차전지에서 회수된 수산화리튬($LiOH{\cdot}xH_2O$)은 촉매, 이산화탄소 흡수제 및 양극재의 전구체로 재사용이 가능하다. 본 연구에서는 폐리튬이차전지로부터 회수된 탄산리튬 전구체를 사용하였으며, 침전공정을 이용한 선택적인 리튬 분리를 통해 고순도 수산화리튬 분말의 제조 및 최적화 연구를 진행하였다. 수산화리튬 제조 조건으로는 교반을 기반으로 반응온도 $90^{\circ}C$, 반응시간 3 시간, 탄산리튬과 수산화칼슘의 비율 1:1의 조건에서 수행하였으며, 순도 향상을 위해 2-step 수산화리튬 제조 공정을 추가적으로 진행하여 최종적으로 고순도의 수산화리튬 제일수화물($LiOH{\cdot}xH_2O$)을 제조하였다.

Keywords

References

  1. Vayrynen, A. and Salminen, J., 2012 : The Journal of Chemical Thermodynamics, 46, pp.80-85. https://doi.org/10.1016/j.jct.2011.09.005
  2. Barre, A., Deguilhem, B., Grolleau, S., Gerard, M., Suard, F., and Riu, D., 2013 : Journal of Power Sources, 241, pp.680-689. https://doi.org/10.1016/j.jpowsour.2013.05.040
  3. Castillo, S., Ansart, F., Laberty-Robert, C., and Portal, J., 2002 : Journal of Power Sources, 112, pp.247-254. https://doi.org/10.1016/S0378-7753(02)00361-0
  4. Zeng, X. and Li, J., 2014 : Frontiers of Environmental Science & Engineering, 8, pp.792-796. https://doi.org/10.1007/s11783-014-0705-6
  5. Song, Y. and Zhao, Z., 2018 : Separation and Purification Technology, 206, pp.335-342. https://doi.org/10.1016/j.seppur.2018.06.022
  6. Jha, M. K., Kumari, A., Jha, A. K., Kumar, V., Hait, J., and Pandey, B. D., 2013 : Waste Management, 33, pp.1890-1897. https://doi.org/10.1016/j.wasman.2013.05.008
  7. Paulino, J. F., Busnardo, N. G., and Afonso, J. C., 2008 : Journal of Hazardous Materials, 150, pp.843-849. https://doi.org/10.1016/j.jhazmat.2007.10.048
  8. Lupi, C., Pasquali, M., and Dell'Era, A., 2005 : Waste Management, 25, pp.215-220. https://doi.org/10.1016/j.wasman.2004.12.012
  9. Williams, D. D. and Miller, R. R., 1970 : Industrial & Engineering Chemistry Fundamentals, 9, pp.454-457. https://doi.org/10.1021/i160035a024
  10. Rasmussen, R. A., Lewis, C. W., Stevens, R. K., Ellenson, W. D., and Dattner, S. L., 1996 : Environmental Science & Technology, 30, pp.1092-1097. https://doi.org/10.1021/es9501979
  11. Li, S., Huang, H., Yang, X., Bai, Y., Li, J., Kobayashi, N., and Kubota, M., 2018 : Applied Thermal Engineering, 128, pp.706-711. https://doi.org/10.1016/j.applthermaleng.2017.09.050
  12. Ayoub, M. and Abdullah, A. Z., 2013 : Catalysis Communications, 34, pp.22-25. https://doi.org/10.1016/j.catcom.2013.01.007
  13. Song, Y. J., 2018 : Korean Journal of Metals and Materials, 56, pp.755-762. https://doi.org/10.3365/KJMM.2018.56.10.755
  14. Swain, B., 2017 : Separation and Purification Technology, 172, pp.388-403. https://doi.org/10.1016/j.seppur.2016.08.031
  15. Contestabile, M., Panero, S., and Scrosati, B., 1999 : Journal of Power Sources, 83, pp.75-78. https://doi.org/10.1016/S0378-7753(99)00261-X
  16. Yuan, B., Wang, J., Cai, W., Yang, Y., Yi, M., and Xiang, L., 2017 : Particuology, 34, pp.97-102. https://doi.org/10.1016/j.partic.2017.01.005
  17. Kim, K. J., 2008 : Separation Science and Technology, 43, pp.420-430. https://doi.org/10.1080/01496390701784088
  18. Ryabtsev, A. D., Nemkov, N. M., Kotsupalo, N. P., and Serikova, L. A., 2004 : Russian Journal of Applied Chemistry, 77, pp.1108-1116. https://doi.org/10.1023/B:RJAC.0000044158.61704.93
  19. Hwang, Y. G., Kil, S. C., and Kim, J. H., 2012 : J. of Korean Inst. of Resources Recycling, 21, pp.79-87. https://doi.org/10.7844/kirr.2012.21.5.79
  20. Grageda, M., Gonzalez, A., Alavia, W., and Ushak, S., 2015 : Energy, 89, pp.667-677. https://doi.org/10.1016/j.energy.2015.06.025
  21. Yuan, B., Wang, J., Cai, W., Yang, Y., Yi, M., and Xiang, L., 2017 : Particuology, 34, pp.97-102. https://doi.org/10.1016/j.partic.2017.01.005
  22. Ryabtsev, A. D., Nemkov, N. M., Kotsupalo, N. P., and Serikova, L. A., 2004 : Russian Journal of Applied Chemistry, 77, pp.1108-1116. https://doi.org/10.1023/B:RJAC.0000044158.61704.93
  23. Wang, H., Huang, K., Zhang, Y., Chen, X., Jin, W., Zheng, S., and Li, P., 2017 : ACS Sustainable Chemistry & Engineering, 5, pp.11489-11495.. https://doi.org/10.1021/acssuschemeng.7b02700