DOI QR코드

DOI QR Code

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009

AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월

  • Yang, Chan-Su (Korea Ocean Satellite Center, Korea Ocean Research & Development Institute (KORDI)) ;
  • Na, Jae-Ho (Korea Ocean Satellite Center, Korea Ocean Research & Development Institute (KORDI))
  • 양찬수 (한국해양연구원 해양위성관측기술연구부 해양위성센터) ;
  • 나재호 (한국해양연구원 해양위성관측기술연구부 해양위성센터)
  • Published : 2009.10.31

Abstract

The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.

북극의 환경은 해빙의 변동에 민감하게 반응하며, 해빙(sea-ice)의 증감은 지구 온난화의 지표이기도 하다. 따라서, 지구의 기후변동의 과정을 이해하고 예측하기 위해서는, 북극 해빙의 변동에 대한 지속적인 모니터링이 이루어져야 한다. 이를 위한 방법으로, 1970년대부터 인공위성의 원격탐사방법인 수동마이크로파 센서를 사용해 왔으며, 해빙의 면적과 유형을 판단하는데 효과적이다. 본 논문에서는, 북극 해빙분포의 계절 및 연 변동의 특성을 이해하기 위하여, 북위 60이상의 영역에 대한 2002년 7월부터 2009년 5월까지의 수동마이크로파 센서 AMSR-E 12.5km 해빙농도(SIC)데이터(기존 수동마이크로파 센서보다 5배의 해상도)를 사용하였다. 여름 최저 해빙역 시점의 데이터에 의하면, 북극 해빙면적은 점차 줄어드는 추세를 나타내고 있으며, 그 감소율은 연간 3.1%로 이것은 약 0.2백만$km^2$의 해빙이 줄어들고 있다는 것을 의미한다. 또한 이 경향은 여름철 해수면수온과 기온의 증가와 관련 있는 다년빙(Multi-Hear ice)의 감소와 함께 진행되고 있다는 것이다. 1년빙(First-year ice)의 면적은 최저의 해빙면적을 기록하였던 2007까지 감소하나, 갑작스런 다년빙(Multi-year ice)의 감소는 2008-2009년 기간의 1년빙의 증가로 이어졌다. 계절에 따른 연 변동에 있어서는, 1월-3월기간에 걸처 바렌츠해(Barents Sea)와 래브라도해(Labrador Sea)에서 공간변동이 크고, 8월-10월 기간에는 동시베리아해(East Siberian Sea)에서 북극점에 이르는 범위에서 큰 것으로 나타났다. 7년 동안 녹지 않은 다년빙의 공간분포도에 의하면, 다년빙이 러시아해역의 동시베리아해, 랍데브해(Laptev Sea)와 카라해(Kara Sea)에서 급격하게 감소하고 있어서 가까운 장래에 북동항로(Northeast Passage)의 이용가능성이 커지고 있다.

Keywords

References

  1. 황종선, 이방용, 심재설, 홍성민, 윤호일, 권태영, 민경덕, 김정우, 2003. 마이크로웨이브 원격탐사를 이용한 남극 웨델해 해빙관측, 자원환경지질학회지, 36(2): 141-148
  2. ACIA, 2005. Arctic Climate Impact Assessment 2005, Cambridge University Press, 1042
  3. Allen, J. R. and D. G. Long, 2006. Microwave observations of daily Antarctic sea-ice edge expansion and contraction rates, IEEE Transaction on Geoscience and Remote Sensing Letters, 3(1): 54-58 https://doi.org/10.1109/LGRS.2005.856710
  4. AMAP, 1998. AMAP Assessment Report: Arctic Pollution Issues, Arctic Monitoring and Assessment Programme, Oslo, Norway
  5. Arrigo, K. R. and G. L. van Dijken, 2004. Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southern Beaufort Sea, Canadian Arctic, Geophysical Research Letters, 31(8): L08304 https://doi.org/10.1029/2003GL018978
  6. Cavalieri, D. J., P. Gloersen, C. L. Parkinson, J.C. Comiso, and H. J. Zwally, 1997. Observed hemispheric asymmetry in global sea ice changes, Science, 278: 1104-1106 https://doi.org/10.1126/science.278.5340.1104
  7. Cavalieri, D. J. and J. Comiso, 2000. Algorithm Theoretical Basis Document for the AMSR-E Sea Ice Algorithm, Revised December 1. Landover, MD, USA: Goddard Space Flight Center
  8. Comiso, J. C., D. J. Cavalieri, C. L. Parkinson, and P. Gloersen, 1997. Passive microwave algrorithms for sea ice concentration: A comparison of two techniques, Remote Sensing of Environment, 60(3): 357-384 https://doi.org/10.1016/S0034-4257(96)00220-9
  9. Ezraty, R. and A. Cavanie, 2002. Inter-annual variations of Arctic multi-year sea ice, 1991- 2001, 21st annual meeting, Arctic Ocean Sciences Board, Groningen, Netherlands
  10. Galley, R. J., E. Key, D. G. Barber, B. J. Hwang, and J. K. Ehn, 2008. Spatial and temporal variability of sea ice in the southern Beaufort Sea and Amundsen Gulf: 1980-2004, Journal of Geophysical Research, 113, C05S95, doi:10.1029/ 2007JC004553
  11. Han, H. and H. Lee, 2007. Comparative study of sea ice concentration by using DMSP SSM/I, Aqua AMSR-E, and KOMPSAT-1 EOC, International Geoscience and Remote Sensing Symposium 2007, Barcelona, Spain, 23-27 July
  12. IPCC, 2001. Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Watson, R. T., and the CoreWriting Team (eds.), Cambridge University Press, 398
  13. Johannessen, O. M., E. Shalina, and M. Miles, 1999. Satellite evidence for an Arctic sea ice cover in transformation, Science, 286: 1937-1939 https://doi.org/10.1126/science.286.5446.1937
  14. Kitagawa, H., 2001. The Northern Sea Route: The shortest sea route linking East Asia Europe, Ship & Ocean Foundation, 28-43
  15. Laxon, S., N. Peacock, and D. Smith, 2003. High interannual variability of sea ice thickness in the Arctic region, Nature, 425(6961): 947-950. https://doi.org/10.1038/nature02050
  16. Mark, C. S, 1995. Diagnosis of the record minimum in Arctic sea ice area during 1990 and associated snow cover extremes, Geophysical Research Letters, 22(16): 2183-2186 https://doi.org/10.1029/95GL02068
  17. Markus, T. and D. J. Cavalieri, 2000. An enhancement NASA team sea ice algorithm, IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1387-1398 https://doi.org/10.1109/36.843033
  18. Markus, T. and D. J. Cavalieri, 2003. AMSR-E Algorithm Theoretical Basis Document: Sea Ice Products, Hydrospheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center Greenbelt, MD 20771
  19. Meier, W. N., 2005. Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas, IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1324-1337 https://doi.org/10.1109/TGRS.2005.846151
  20. NSIDC, 2009. Sea Ice Index: Interpretation Resources for Sea Ice Trends and Anomalies, National Snow and Ice Data Center (http://nsidc.org/)
  21. Parkinson, C. L., 2000. Recent trend reversals in Arctic sea ice extents: Possible connections to the North Atlantic Oscillation. Polar Geography, 24: 1-12 https://doi.org/10.1080/10889370009377684
  22. Partington, K. C., 2000. A data fusion algorithm for mapping sea-ice concentrations from Special Sensor Microwave/Imager data, IEEE Transations on Geoscience and Remote Sensing, 38(4): 1947-1958 https://doi.org/10.1109/36.851776
  23. Piwowar, J. M., D. R. Peddle, and E. F. Ledrew, 1998. Temporal mixture analysis of arctic sea ice imagery: A new approach of monitoring environmental change, Remote Sensing of Environment, 63(3): 195-207 https://doi.org/10.1016/S0034-4257(97)00105-3
  24. Richter-Menge, J., J. Comiso, W. Meier, S. Nghiem, and D. Perovich, 2008. Arctic Report Card 2008: Sea Ice Cover, http://www.arctic.noaa. gov/reportcard
  25. Serreze, M. C., J. A. Maslanik, T. A. Scambos, F. Fetterer. J. Stroeve, K. Knowles, C. Fowler, S. Drobot, R. G. Barry, and T. M. Haran, 2003. A record minimum arctic sea ice extent and area in 2002, Geophysical Research Letters, 30(3): 10(1)-10(4), doi: 10.1029/2002GL016406
  26. Shirasawa, K., M. Lepparanta, T. Saloranta, T. Kawamura, A. Polomoshnov, and G. Surkov, 2005. The thickness of coastal fast ice in the Sea of Okhotsk, Cold Regions Science and Technology, 42(1): 25-40 https://doi.org/10.1016/j.coldregions.2004.11.003
  27. Vinnikov, K. Y., A. Robock, R. J. Stouffer, J. E. Walsh, C. L. Parkinson, D. J. Cavalieri, J. F. B. Mitchell, D. Garrett, and V. F. Zakharov, 1999. Global warming and northern hemisphere sea ice extent, Science, 286(5446): 1934-1937 https://doi.org/10.1126/science.286.5446.1934
  28. WMO, 1970. WMO-Sea ice nomenclature, 1970 ed, Secretariat of the World Meteorological Organization, Geneva
  29. Zakharov, V. F., 2003. Sea ice extent changes during XX century, Meteorology and Hydrology, 5: 75- 86 (in Russian)