• Title/Summary/Keyword: TEM-EDS

Search Result 217, Processing Time 0.027 seconds

A Study on the Preparation and Purification Characteristics of Graphene Oxide by Graphite Type (흑연 종류에 따른 산화 그래핀의 제조 및 정제를 통한 특성연구)

  • Jeong, Kyeom;Kim, Young-Ho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.132-138
    • /
    • 2021
  • Research is being conducted on graphene to provide graphene having both excellent physical as well as electrical properties in addition to unique physical properties. In this study, Hummer's method, which is a representative method for chemical exfoliation, was applied in order to investigate the possibility of the mass production of high-quality graphene oxide. Three types of graphite (graphite, crystalline graphite, and expanded graphite) were used in the preparation of graphene oxide with variations in the amount of potassium permanganate added, reaction temperature, and reaction time. Then a Fourier transform infrared spectroscopy (FT-IR), a Raman spectrometer, and a transmission electron microscope (TEM) were used to measure the quality of the prepared graphene oxide. Of the three types of graphite used in this experiment, crystalline graphite showed the highest quality. The prepared graphene oxide was then purified with an organic solvent, and an analysis conducted using energy dispersive X-ray spectroscopy (EDS). From the results of the residual values, we were able to confirm that both acid wastewater and wastewater were best purified using cyclohexane. The method for manufacturing graphene oxide as well as the method of purification using organic solvents that are presented in this study are expected to have less of an environmental impact, making them environmentally friendly. This makes them suitable for use in various industrial fields such as the film industry and for heat dissipation and as coating agents.

The study of characterization of extracted vanadium in waste catalyst for vanadium redox flow battery (폐촉매에서 추출한 바나듐 레독스 흐름전지용 바나듐의 특성 연구)

  • Kang, Ung Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.598-602
    • /
    • 2018
  • This study examined the characteristics of the waste catalyst used in the petroleum refinery operations. The total pore volume, specific surface area, and average pore size of the spent catalyst used in the petroleum refinery operations were 3.96cc/g, 13.81m2/g, and 1.15A, respectively. The weight loss observed in the range from $25^{\circ}C-700^{\circ}C$ for the spent catalysts using TG and DTA was approximately 23 wt. %. EDS analysis of the waste catalyst sample showed that the five major components were vanadium, nickel, manganese, iron, and copper. The extraction system is attractive for liquid-liquid extraction. In this study, Cynex 272 was used to extract vanadium from waste catalyst. The electrochemical characteristics of the extracted vanadium solution were measured by cyclic voltammetry (CV). As a result, an oxidation / reduction peak appeared, indicating the potential of an electrolytic solution.

An Experimental Study on Composition Characteristics of $SiO_2/TiO_2$ Multicomponent Particle in Coflow Diffusion Flame (화염중 발생하는 $SiO_2/TiO_2$ 다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-Oh;Suh, Jeong-Soo;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.441-446
    • /
    • 2000
  • Chemical compositions of monodisperse $SiO_2/TiO_2$ multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. $SiO_2/TiO_2$ multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP (titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor theoretically, flow rate of carrier gas $N_2$ was fixed at 0.61pm for TTIP, at 0.11pm for TEOS. In situ sampling probe was used to supply particles into differential mobility analyzer(DMA) which was calibrated with using commercial DMA(TSI 3071A) and classifying monodisperse multicomponent particles. Classified particles were collected with electrophoretic collector. The distributions of composition from particle to particle were determined using EDS (energy dispersive spectrometry) coupled with TEM (transmission electron microscope). The chemical (atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the atomic composition of $SiO_2$ decreased with the height from burner surface and the composition of $SiO_2$ and $TiO_2$ approached to the value of 1 to 1 in far downstream. It is also found that the composition of $SiO_2$ decreases as the mobility diameter of aggregate increases.

  • PDF

Microstructural characteristics of a fresh U(Mo) monolithic mini-plate: Focus on the Zr coating deposited by PVD

  • Iltis, Xaviere;Drouan, Doris;Blay, Thierry;Zacharie, Isabelle;Sabathier, Catherine;Onofri, Claire;Steyer, Christian;Schwarz, Christian;Baumeister, Bruno;Allenou, Jerome;Stepnik, Bertrand;Petry, Winfried
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2629-2639
    • /
    • 2021
  • Within the frame of the EMPIrE test, four monolithic mini-plates were irradiated in the ATR reactor. In two of them, the monolithic U(Mo) foil had been PVD-coated with Zr before the plate manufacturing. Extensive microstructural characterizations were performed on a fresh archive mini-plate, using Optical Microscopy (OM), Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS), Electron Backscattered Diffraction (EBSD) and Focused Ion Beam (FIB)/Transmission Electron Microscopy (TEM) with nano EDS. A particular attention was paid to the examination of the U(Mo) foil, the PVD coating, the cladding/Zr and Zr/U(Mo) interfaces. The Zr coating has a thickness around 15 ㎛. It has a columnar microstructure and appears dense. The cohesion of the cladding/Zr and Zr/U(Mo) interfaces seems to be satisfactory. An almost continuous layer with a thickness of the order of 100-300 nm is present at the cladding/Zr interface and corresponds to an oxidized part of the Zr coating. At the Zr/U(Mo) interface, a thin discontinuous layer is observed. It could correspond to locally oxidized U(Mo). This work provides a basis for interpreting the results of characterizations on EMPIrE irradiated plates.

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.

Characterization of Mineralogical Changes of Chrysotile and its Thermal Decomposition by Heat Treatment (열처리에 따른 백석면의 광물학적 특성 변화와 열분해 과정 연구)

  • Jeong, Hyeonyi;Moon, Wonjin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.77-88
    • /
    • 2016
  • Chrysotile is a 1:1 sheet silicate mineral belonging to serpentine group. It has been highlighted studies because of uses, shapes and structural characteristics of the fibrous chrysotile. However, it was designated as Class 1 carcinogen, so high attentions were being placed on detoxification studies of chrysotile. The objectives of this study were to investigate changes of mineralogical characteristics of chrysotile and to suggest detoxification mechanism of chrysotile by thermal decomposition. Samples for this study were obtained from LAB Chrysotile mine in Canada. The samples were heated in air in the range of 600 to $1,300^{\circ}C$. Changes of mineralogical characteristics such as crystal structure, shape, and chemical composition of the chrysotile fibers were examined by TG-DTA, XRD, FT-IR, TEM-EDS and SEM-EDS analyses. As a result of thermal decomposition, the fibrous chrysotile having hollow tube structure was dehydroxylated at $600-650^{\circ}C$ and transformed to disordered chrysotile by removal of OH at the octahedral sheet (MgOH) (Dehydroxylation 1). Upon increasing temperature, it was transformed to forsterite ($Mg_2SiO_4$) at $820^{\circ}C$ by rearrangement of Mg, Si and O (Dehydroxylation 2). In addition, crystal structure of forsterite had begun to transform at $800^{\circ}C$, and gradually grown 3-dimensionally to enstatite ($MgSiO_3$) by recrystallization after the heating above $1,100^{\circ}C$. And then finally transformed to spherical minerals. This study showed chrysotile structure was collapsed about $600-700^{\circ}C$ by dehydroxylation. And then the fibrous chrysotile was transformed to forsterite and enstatite, as non-hazardous minerals. Therefore, this study indicates heat treatment can be used to detoxification of chrysotile.

Study about the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites (다중벽 탄소나노튜브와 다양한 나노입자 복합체의 In-situ 합성법개발 및 구조제어연구)

  • Park, Ho Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.729-732
    • /
    • 2012
  • Herein we report the in-situ synthesis and direct decoration of chalcogenide naoparticles (NPs) onto multiwalled carbon nanotubes (MWCNTs) through an ionic liquid-assisted sonochemical method (ILASM). The as-obtained MWCNT/$BMimBF_4$/CdTe, MWCNT/$BMimBF_4$/ZnTe and MWCNT/$BMimBF_4$/ZnSe nanocomposites were characterized by TEM images and EDS spectra. In particular, the morphologies of nanocomposites such as bump-like, rough, and smooth core-shell structures were strongly influenced by the type of precursors and the interactions with MWCNT. This synthetic strategy opens a new way to directly synthesize and deposit semiconducting NPs (s-NPs) onto CNTs, which consist of binary components obtained from two precursors with different reaction rates.

Pit Corrosion of SS420 Stainless Steel by Grain Boundary Sensitization (스테인레스강 SS420의 입계예민화에 의한 피트 부식)

  • Choe, Byung Hak;Lee, Bum Gyu;Jang, Hyeon Su;Park, Chan Sung;Kim, Jin Pyo;Park, Nam Gyu;Kim, Cheong In;Kim, Bo Mi
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.431-437
    • /
    • 2017
  • This study investigated the surface pit corrosion of SS420J2 stainless steel accompanied by intergranular crack. To reveal the causes of surface pits and cracks, OM, SEM, and TEM analyses of the microstructures of the utilized SS420J2 were performed, as was simulated heat treatment. The intergranular cracks were found to have been induced by a grain boundary carbide of $(Cr,Fe)_{23}C_6$, which was identified by SEM/EDS and TEM diffraction analyses. The mechanism of grain boundary sensitization occurred at the position of the carbide, followed by its occurrence at the Cr depleted zone. The grain boundary carbide of $(Cr,Fe)_{23}C_6$ type precipitated during air cooling condition after a $1038^{\circ}C$ solid solution treatment. The carbide precipitate formation also accelerated at the band structure formed by cold working. Therefore, using manufacturing processes of cooling and cold working, it is difficult to protect SS420J2 stainless steel against surface pit corrosion. Several counter plans to fight pit corrosion by sensitization were suggested, involving alloying and manufacturing processes.

Effect of Al Addition on the Precipitation Behavior of a Binary Mg-Zn Alloy

  • Kim, Ye-Lim;Tezuka, Hiroyasu;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.111-117
    • /
    • 2012
  • The effect of Al addition on the precipitation behavior of a binary Mg-Zn alloy was investigated based on the changes in the morphology, distribution and element concentration of precipitates formed during aging treatment. The as-cast Mg-6.0 mass%Zn (Mg-6Zn) and Mg-6.0 mass%Zn-3.0 mass%Al (Al-added) were homogenized at 613 K for 48 h and at 673 K for 12 h; they were then solid solution treated at 673 K for 0.5 h and 1 h, respectively. The Mg-6Zn and Al-added alloys were aged at 403 K and 433 K. The peak hardness of the Al-added alloy was higher than that of the Mg-6Zn alloy at each aging temperature. Rod-like, plate-like, blocky, and lath-like precipitates were observed in the Al-added alloy aged at 433 K for 230.4 ks, although the rod-like and plate-like precipitates were observed in the TEM microstructure of the Mg-6Zn alloy aged at 433 K for 360 ks. Moreover, the precipitates in the Al-added alloy were refined and densely distributed compared with those in the Mg-6Zn alloy. The Cliff-Lorimer plots obtained by the EDS analysis of the rod-like ${\beta}_1^'$ and plate-like ${\beta}_2^'$ phases in the Al-added alloy peak aged at 433 K for 230.4 ks were examined. It was confirmed that the ${\beta}_2^'$ phases had higher concentration of solute Al atom than was present in the ${\beta}_1^'$ phases, indicating that the properties of precipitates can be changed by Al addition.

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF